cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A243266 Decimal expansion of a parking constant related to the asymptotic expected number of cars, assuming random car lengths.

Original entry on oeis.org

9, 8, 4, 8, 7, 1, 2, 8, 2, 5, 2, 5, 9, 9, 5, 3, 0, 4, 4, 7, 2, 7, 9, 5, 2, 2, 1, 5, 0, 7, 0, 5, 9, 5, 3, 2, 3, 1, 2, 7, 6, 0, 9, 1, 7, 0, 4, 1, 0, 3, 7, 4, 9, 5, 8, 1, 3, 6, 5, 2, 3, 2, 5, 5, 2, 0, 6, 5, 3, 7, 9, 3, 8, 8, 4, 0, 7, 3, 1, 6, 0, 6, 4, 3, 1, 8, 7, 0, 0, 9, 7, 4, 9, 4, 6, 3, 0, 0, 6, 7
Offset: 0

Views

Author

Jean-François Alcover, Jun 02 2014

Keywords

Examples

			0.9848712825259953044727952215...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.3 Renyi's parking constant, p. 279.

Crossrefs

Cf. A050996.

Programs

  • Mathematica
    (1-1/2^((Sqrt[17]-1)/4))*Sqrt[Pi]*Gamma[Sqrt[17]/2]/(Gamma[(Sqrt[17]+1)/4]*Gamma[(Sqrt[17]+3)/4]^2) // RealDigits[#, 10, 100]& // First
  • PARI
    (1-1/2^((sqrt(17)-1)/4))*sqrt(Pi)*gamma(sqrt(17)/2)/(gamma((sqrt(17)+1)/4)*gamma((sqrt(17)+3)/4)^2) \\ G. C. Greubel, Feb 14 2017

Formula

(1-1/2^((sqrt(17)-1)/4))*sqrt(Pi)*GAMMA(sqrt(17)/2)/(GAMMA((sqrt(17)+1)/4)*GAMMA((sqrt(17)+3)/4)^2), where GAMMA is the Euler Gamma function.