cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A243285 Number of integers 1 <= k <= n which are not divisible by the square of their largest noncomposite divisor.

Original entry on oeis.org

0, 1, 2, 2, 3, 4, 5, 5, 5, 6, 7, 8, 9, 10, 11, 11, 12, 12, 13, 14, 15, 16, 17, 18, 18, 19, 19, 20, 21, 22, 23, 23, 24, 25, 26, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 38, 38, 39, 40, 41, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 50, 51, 52, 53, 54, 55, 56, 57
Offset: 1

Views

Author

Antti Karttunen, Jun 02 2014

Keywords

Comments

a(n) tells how many natural numbers <= n there are which are not divisible by the square of their largest noncomposite divisor.
The largest noncomposite divisor of 1 is 1 itself, and 1 is divisible by 1^2, thus 1 is not included in the count, and a(1)=0.
The "largest noncomposite divisor" for any integer > 1 means the same thing as the largest prime divisor, and thus we are counting the terms of A102750 (Numbers n such that square of largest prime dividing n does not divide n).
Thus this is the partial sums of the characteric function for A102750.

Examples

			For n = 9, there are numbers 2, 3, 5, 6 and 7 which are not divisible by the square of their largest prime factor, while 1 is excluded (no prime factors) and 4 and 8 are divisible both by 2^2 and 9 is divisible by 3^2. Thus a(9) = 5.
		

Crossrefs

Programs

  • Mathematica
    ndsQ[n_]:=Mod[n,Max[Select[Divisors[n],!CompositeQ[#]&]]^2]!=0; Accumulate[Table[If[ ndsQ[n],1,0],{n,80}]] (* Harvey P. Dale, Oct 14 2023 *)
  • Python
    from sympy import primefactors
    def a243285(n): return 0 if n==1 else sum([1 for k in range(2, n + 1) if k%(primefactors(k)[-1]**2)!=0]) # Indranil Ghosh, Jun 15 2017
  • Scheme
    (define (A243285 n) (- n (A243283 n)))
    

Formula

a(n) = n - A243283(n).
For all n, a(A102750(n)) = n, thus this sequence works also as an inverse function for the injection A102750.