cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A243402 Primes p such that p^10 - p^9 - p^8 - p^7 - p^6 - p^5 - p^4 - p^3 - p^2 - p - 1 is prime.

Original entry on oeis.org

449, 839, 857, 941, 977, 1109, 1289, 1607, 1901, 2591, 2711, 3041, 3299, 4007, 4349, 4721, 5531, 5849, 6311, 6779, 6911, 7451, 7829, 7907, 8369, 8597, 8999, 9419, 9767, 11351, 12917, 13421, 14321, 14969, 15077, 15131, 15227, 15551, 15809, 16649, 16979, 17021, 17291, 17417
Offset: 1

Views

Author

Derek Orr, Jun 04 2014

Keywords

Comments

No terms end in a 3, since if p == 3 (mod 10), then p^10 - p^9 - p^8 - p^7 - p^6 - p^5 - p^4 - p^3 - p^2 - p - 1 == 5 (mod 10) and is therefore not prime. - Michel Marcus, Jun 25 2014

Crossrefs

Cf. A243318.

Programs

  • Mathematica
    Select[Prime[Range[2100]],PrimeQ[#^10-Total[#^Range[9]]-1]&] (* Harvey P. Dale, Sep 08 2019 *)
  • PARI
    for(n=1,5*10^4,if(ispseudoprime(n)&&ispseudoprime(n^10-sum(i=0,9,n^i)),print1(n,", ")))
  • Python
    import sympy
    from sympy import isprime
    {print(n,end=', ') for n in range(5*10**4) if isprime(n**10-n**9-n**8-n**7-n**6-n**5-n**4-n**3-n**2-n-1) and isprime(n)}