A243485 Sum of all the products formed by multiplying the corresponding smaller and larger parts of the Goldbach partitions of n.
0, 0, 0, 4, 6, 9, 10, 15, 14, 46, 0, 35, 22, 82, 26, 94, 0, 142, 34, 142, 38, 263, 0, 357, 46, 371, 0, 302, 0, 591, 58, 334, 62, 780, 0, 980, 0, 578, 74, 821, 0, 1340, 82, 785, 86, 1356, 0, 1987, 94, 1512, 0, 1353, 0, 2677, 106, 1421, 0, 2320, 0, 4242, 118
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Eric Weisstein's World of Mathematics, Goldbach Partition
- Wikipedia, Goldbach's conjecture
- Index entries for sequences related to Goldbach conjecture
- Index entries for sequences related to partitions
Programs
-
Maple
with(numtheory): A243485:=n->add(i*(n-i)*(pi(i)-pi(i-1))*(pi(n-i)-pi(n-i-1)), i=1..floor(n/2)): seq(A243485(n), n=1..100); # Wesley Ivan Hurt, Oct 29 2017
-
Mathematica
Table[Sum[i*(n - i)*Floor[2/PrimeOmega[i (n - i)]], {i, 2, n/2}], {n, 50}]
Formula
a(n) = Sum_{i=2..n/2} i*(n-i) * A064911(i*(n-i)).
Comments