cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A243499 Product of parts of integer partitions as enumerated in the table A125106.

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 4, 1, 4, 3, 6, 2, 9, 4, 8, 1, 5, 4, 8, 3, 12, 6, 12, 2, 16, 9, 18, 4, 27, 8, 16, 1, 6, 5, 10, 4, 15, 8, 16, 3, 20, 12, 24, 6, 36, 12, 24, 2, 25, 16, 32, 9, 48, 18, 36, 4, 64, 27, 54, 8, 81, 16, 32, 1, 7, 6, 12, 5, 18, 10, 20, 4, 24, 15, 30, 8, 45, 16, 32, 3
Offset: 0

Views

Author

Antti Karttunen, Jun 28 2014

Keywords

Comments

This sequence and A341392 have the same set of values on intervals from 2^m to 2^(m+1) - 1 for m >= 0. - Mikhail Kurkov, Jun 18 2021 [verification needed]

Crossrefs

Cf. A125106, A161511 (gives the corresponding sums), A227184, A003963, A243504, A006068, A005940, A163511, A000110, A007814, A023416, A053645, A329369 (similar recurrence), A341392.

Programs

  • Scheme
    (define (A243499 n) (let loop ((n n) (i 1) (p 1)) (cond ((zero? n) p) ((even? n) (loop (/ n 2) (+ i 1) p)) (else (loop (/ (- n 1) 2) i (* p i))))))

Formula

Can also be obtained by mapping with an appropriate permutation from the products of parts of each partition computed for other enumerations similar to A125106:
a(n) = A227184(A006068(n)).
a(n) = A003963(A005940(n+1)).
a(n) = A243504(A163511(n)).
From Mikhail Kurkov, Jul 11 2021: (Start)
a(n) = (1 + A023416(n))*a(A053645(n)) for n > 0 with a(0) = 1.
a(2n+1) = a(n) for n >= 0.
a(2n) = A341392(2*A059894(n)) = a(n - 2^f(n)) + a(2n - 2^f(n)) = (2 + f(n))*a(n - 2^f(n)) for n > 0 with a(0)=1 where f(n) = A007814(n).
Sum_{k=0..2^n - 1} a(k) = A000110(n+1) for n >= 0.
a((4^n - 1)/3) = n! for n >= 0.
a(2^m*(2^n - 1)) = (m+1)^n for n >= 0, m >= 0. (End) [verification needed]