cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A243581 Integers of the form 8k + 7 that can be written as a sum of four distinct squares of the form m, m + 2, m + 3, m + 4, where m == 2 (mod 4).

Original entry on oeis.org

119, 351, 711, 1199, 1815, 2559, 3431, 4431, 5559, 6815, 8199, 9711, 11351, 13119, 15015, 17039, 19191, 21471, 23879, 26415, 29079, 31871, 34791, 37839, 41015, 44319, 47751, 51311, 54999, 58815, 62759, 66831, 71031, 75359, 79815
Offset: 1

Views

Author

Walter Kehowski, Jun 08 2014

Keywords

Comments

If n is of the form 8k + 7 and n = a^2 + b^2 + c^2 + d^2 where [a, b, c, d] has gap pattern 122, then [a, b, c, d] = [3, 5, 6, 7] + [4*i, 4*i, 4*i, 4*i], i >= 0.

Examples

			a(5) = 64*5^2 + 40*5 + 15 = 1815 and 4*5 - 1 = 19 so 1815 = 19^2 + 21^2 + 22^2 + 23^2.
		

Crossrefs

Programs

  • Magma
    [ 64*n^2 + 40*n + 15 : n in [1..50] ]; // Wesley Ivan Hurt, Jun 11 2014
  • Maple
    A243581 := proc(n::posint) return 64*n^2+40*n+15 end;
  • Mathematica
    Table[64n^2 + 40n + 15, {n, 50}] (* Alonso del Arte, Jun 08 2014 *)
    LinearRecurrence[{3,-3,1},{119,351,711},50] (* Harvey P. Dale, Jul 23 2014 *)
  • PARI
    Vec(-x*(15*x^2-6*x+119)/(x-1)^3 + O(x^100)) \\ Colin Barker, Jun 09 2014
    

Formula

a(n) = 64*n^2 + 40*n + 15.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Colin Barker, Jun 09 2014
G.f.: -x*(15*x^2-6*x+119) / (x-1)^3. - Colin Barker, Jun 09 2014