A243581 Integers of the form 8k + 7 that can be written as a sum of four distinct squares of the form m, m + 2, m + 3, m + 4, where m == 2 (mod 4).
119, 351, 711, 1199, 1815, 2559, 3431, 4431, 5559, 6815, 8199, 9711, 11351, 13119, 15015, 17039, 19191, 21471, 23879, 26415, 29079, 31871, 34791, 37839, 41015, 44319, 47751, 51311, 54999, 58815, 62759, 66831, 71031, 75359, 79815
Offset: 1
Examples
a(5) = 64*5^2 + 40*5 + 15 = 1815 and 4*5 - 1 = 19 so 1815 = 19^2 + 21^2 + 22^2 + 23^2.
Links
- Walter Kehowski, Table of n, a(n) for n = 1..20737
- J. Owen Sizemore, Lagrange's Four Square Theorem
- R. C. Vaughan, Lagrange's Four Square Theorem
- Eric Weisstein's World of Mathematics, Lagrange's Four-Square Theorem
- Wikipedia, Lagrange's four-square theorem
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Programs
-
Magma
[ 64*n^2 + 40*n + 15 : n in [1..50] ]; // Wesley Ivan Hurt, Jun 11 2014
-
Maple
A243581 := proc(n::posint) return 64*n^2+40*n+15 end;
-
Mathematica
Table[64n^2 + 40n + 15, {n, 50}] (* Alonso del Arte, Jun 08 2014 *) LinearRecurrence[{3,-3,1},{119,351,711},50] (* Harvey P. Dale, Jul 23 2014 *)
-
PARI
Vec(-x*(15*x^2-6*x+119)/(x-1)^3 + O(x^100)) \\ Colin Barker, Jun 09 2014
Formula
a(n) = 64*n^2 + 40*n + 15.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Colin Barker, Jun 09 2014
G.f.: -x*(15*x^2-6*x+119) / (x-1)^3. - Colin Barker, Jun 09 2014
Comments