cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A243609 Numbers n such that the difference between the greatest prime divisor of n^3 + 1 and the sum of the other distinct prime divisors is equal to +-1.

Original entry on oeis.org

12, 17, 179, 546, 1241, 12520, 19484, 35732, 65933, 76782, 86918, 90035, 94381, 120195, 183677, 209837, 229829, 241951, 288260, 315724, 338712, 344231, 422069, 568346, 597327, 734382, 894504, 1345874, 1635804, 1697093, 2000325, 2043907, 2131745, 2262789, 2492717
Offset: 1

Views

Author

Michel Lagneau, Jun 23 2014

Keywords

Examples

			12 is in the sequence because 12^3 + 1 = 1729 = 7 * 13 * 19 and 19 - (13+7) = 19 - 20 = -1;
17 is in the sequence because 17^3 + 1 = 4914 = 2*3^3*7*13 and 13 - (7+3+2) = 13 - 12 = 1.
		

Crossrefs

Programs

  • Mathematica
    fpdQ[n_]:=Module[{f=Transpose[FactorInteger[n^3+1]][[1]]},Max[f]-Total[Most[f]]==1];gpdQ[n_]:=Module[{g=Transpose[FactorInteger[n^3+1]][[1]]},Max[g]-Total[Most[g]]==-1];Union[Select[Range[2,5*10^6],fpdQ ],Select[Range[2,5*10^6],gpdQ ]]
    dgQ[n_]:=Module[{f=FactorInteger[n^3+1][[All,1]],len,a,b},len= Length[ f]-1;{a,b}=TakeDrop[f,len];Abs[Total[a]-b[[1]]]==1]; Select[Range[ 25*10^5],dgQ] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jan 03 2019 *)