cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A243631 Square array of Narayana polynomials N_n evaluated at the integers, A(n,k) = N_n(k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 5, 1, 1, 1, 4, 11, 14, 1, 1, 1, 5, 19, 45, 42, 1, 1, 1, 6, 29, 100, 197, 132, 1, 1, 1, 7, 41, 185, 562, 903, 429, 1, 1, 1, 8, 55, 306, 1257, 3304, 4279, 1430, 1, 1, 1, 9, 71, 469, 2426, 8925, 20071, 20793, 4862, 1
Offset: 0

Views

Author

Peter Luschny, Jun 08 2014

Keywords

Comments

Mirror image of A008550. - Philippe Deléham, Sep 26 2014

Examples

			   [0]  [1]      [2]      [3]      [4]      [5]      [6]     [7]
[0] 1,   1,       1,       1,       1,       1,       1,       1
[1] 1,   1,       1,       1,       1,       1,       1,       1
[2] 1,   2,       3,       4,       5,       6,       7,       8 .. A000027
[3] 1,   5,      11,      19,      29,      41,      55,      71 .. A028387
[4] 1,  14,      45,     100,     185,     306,     469,     680 .. A090197
[5] 1,  42,     197,     562,    1257,    2426,    4237,    6882 .. A090198
[6] 1, 132,     903,    3304,    8925,   20076,   39907,   72528 .. A090199
[7] 1, 429,    4279,   20071,   65445,  171481,  387739,  788019 .. A090200
   A000108, A001003, A007564, A059231, A078009, A078018, A081178
First few rows of the antidiagonal triangle are:
  1;
  1, 1;
  1, 1, 1;
  1, 1, 2,  1;
  1, 1, 3,  5,  1;
  1, 1, 4, 11, 14,  1;
  1, 1, 5, 19, 45, 42, 1; - _G. C. Greubel_, Feb 16 2021
		

Crossrefs

Cf. A001263, A008550 (mirror), A204057 (another version), A242369 (main diagonal), A099169 (diagonal), A307883, A336727.
Cf. A132745.

Programs

  • Magma
    A243631:= func< n,k | n eq 0 select 1 else (&+[ Binomial(n,j)^2*k^j*(n-j)/(n*(j+1)): j in [0..n-1]]) >;
    [A243631(k,n-k): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 16 2021
  • Maple
    # Computed with Narayana polynomials:
    N := (n,k) -> binomial(n,k)^2*(n-k)/(n*(k+1));
    A := (n,x) -> `if`(n=0, 1, add(N(n,k)*x^k, k=0..n-1));
    seq(print(seq(A(n,k), k=0..7)), n=0..7);
    # Computed by recurrence:
    Prec := proc(n,N,k) option remember; local A,B,C,h;
    if n = 0 then 1 elif n = 1 then 1+N+(1-N)*(1-2*k)
    else h := 2*N-n; A := n*h*(1+N-n); C := n*(h+2)*(N-n);
    B := (1+h-n)*(n*(1-2*k)*(1+h)+2*k*N*(1+N));
    (B*Prec(n-1,N,k) - C*Prec(n-2,N,k))/A fi end:
    T := (n, k) -> Prec(n,n,k)/(n+1);
    seq(print(seq(T(n,k), k=0..7)), n=0..7);
    # Array by o.g.f. of columns:
    gf := n -> 2/(sqrt((n-1)^2*x^2-2*(n+1)*x+1)+(n-1)*x+1):
    for n from 0 to 11 do PolynomialTools:-CoefficientList(convert( series(gf(n), x, 12), polynom), x) od; # Peter Luschny, Nov 17 2014
    # Row n by linear recurrence:
    rec := n -> a(x) = add((-1)^(k+1)*binomial(n,k)*a(x-k), k=1..n):
    ini := n -> seq(a(k) = A(n,k), k=0..n): # for A see above
    row := n -> gfun:-rectoproc({rec(n),ini(n)},a(x),list):
    for n from 1 to 7 do row(n)(8) od; # Peter Luschny, Nov 19 2014
  • Mathematica
    MatrixForm[Table[JacobiP[n,1,-2*n-1,1-2*x]/(n+1), {n,0,7},{x,0,7}]]
    Table[Hypergeometric2F1[1-k, -k, 2, n-k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 16 2021 *)
  • Sage
    def NarayanaPolynomial():
        R = PolynomialRing(ZZ, 'x')
        D = [1]
        h = 0
        b = True
        while True:
            if b :
                for k in range(h, 0, -1):
                    D[k] += x*D[k-1]
                h += 1
                yield R(expand(D[0]))
                D.append(0)
            else :
                for k in range(0, h, 1):
                    D[k] += D[k+1]
            b = not b
    NP = NarayanaPolynomial()
    for _ in range(8):
        p = next(NP)
        [p(k) for k in range(8)]
    
  • Sage
    def A243631(n,k): return 1 if n==0 else sum( binomial(n,j)^2*k^j*(n-j)/(n*(j+1)) for j in [0..n-1])
    flatten([[A243631(k,n-k) for k in [0..n]] for n in [0..12]]) # G. C. Greubel, Feb 16 2021
    

Formula

T(n, k) = 2F1([1-n, -n], [2], k), 2F1 the hypergeometric function.
T(n, k) = P(n,1,-2*n-1,1-2*k)/(n+1), P the Jacobi polynomials.
T(n, k) = sum(j=0..n-1, binomial(n,j)^2*(n-j)/(n*(j+1))*k^j), for n>0.
For a recurrence see the second Maple program.
The o.g.f. of column n is gf(n) = 2/(sqrt((n-1)^2*x^2-2*(n+1)*x+1)+(n-1)*x+1). - Peter Luschny, Nov 17 2014
T(n, k) ~ (sqrt(k)+1)^(2*n+1)/(2*sqrt(Pi)*k^(3/4)*n^(3/2)). - Peter Luschny, Nov 17 2014
The n-th row can for n>=1 be computed by a linear recurrence, a(x) = sum(k=1..n, (-1)^(k+1)*binomial(n,k)*a(x-k)) with initial values a(k) = p(n,k) for k=0..n and p(n,x) = sum(j=0..n-1, binomial(n-1,j)*binomial(n,j)*x^j/(j+1)) (implemented in the fourth Maple script). - Peter Luschny, Nov 19 2014
(n+1) * T(n,k) = (k+1) * (2*n-1) * T(n-1,k) - (k-1)^2 * (n-2) * T(n-2,k) for n>1. - Seiichi Manyama, Aug 08 2020
Sum_{k=0..n} T(k, n-k) = Sum_{k=0..n} 2F1([-k, 1-k], [2], n-k) = A132745(n). - G. C. Greubel, Feb 16 2021