A243662 Triangle read by rows: the reversed x = 1+q Narayana triangle at m=2.
1, 3, 1, 12, 8, 1, 55, 55, 15, 1, 273, 364, 156, 24, 1, 1428, 2380, 1400, 350, 35, 1, 7752, 15504, 11628, 4080, 680, 48, 1, 43263, 100947, 92169, 41895, 9975, 1197, 63, 1, 246675, 657800, 708400, 396704, 123970, 21560, 1960, 80, 1, 1430715, 4292145, 5328180, 3552120, 1381380, 318780, 42504, 3036, 99, 1
Offset: 1
Examples
Triangle begins: 1; 3, 1; 12, 8, 1; 55, 55, 15, 1; 273, 364, 156, 24, 1; 1428, 2380, 1400, 350, 35, 1; ...
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..11325 (rows 1 <= n <= 150, flattened)
- Paul Barry, On the inversion of Riordan arrays, arXiv:2101.06713 [math.CO], 2021.
- J.-C. Novelli and J.-Y. Thibon, Hopf Algebras of m-permutations,(m+1)-ary trees, and m-parking functions, arXiv preprint arXiv:1403.5962 [math.CO], 2014. See Fig. 10.
Crossrefs
Programs
-
Mathematica
T[m_][n_, k_] := Binomial[(m + 1) n + 1 - k, n - k] Binomial[n, k - 1]/n; Table[T[2][n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Feb 12 2019 *)
-
PARI
T(n)=[Vecrev(p) | p<-Vec(serreverse(x/((1+x+x*y)*(1+x)^2) + O(x*x^n)))] { my(A=T(10)); for(i=1, #A, print(A[i])) } \\ Andrew Howroyd, Apr 13 2023
Formula
T(n,k) = (binomial(3*n+1,n) * binomial(n,k-1) * binomial(n-1,k-1)) / (binomial(3*n,k-1) * (3*n+1)) = (A001764(n) * A001263(n,k) * k) / binomial(3*n,k-1) for 1 <= k <= n (conjectured). - Werner Schulte, Nov 22 2018
T(n,k) = binomial(3*n+1-k,n-k) * binomial(n,k-1) / n for 1 <= k <= n, more generally: T_m(n,k) = binomial((m+1)*n+1-k,n-k) * binomial(n,k-1) / n for 1 <= k <= n and some fixed integer m > 1. - Werner Schulte, Nov 22 2018
G.f.: A(x,y) is the series reversion of x/((1 + x + x*y)*(1 + x)^2). - Andrew Howroyd, Apr 13 2023
Extensions
Data and Example (T(2,2) and T(5,3)) corrected and more terms added by Werner Schulte, Nov 22 2018
Comments