cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A243693 Number of Hyposylvester classes of 3-multiparking functions of length n.

Original entry on oeis.org

1, 1, 5, 32, 233, 1833, 15180, 130392, 1151057, 10378883, 95182445, 885053524, 8324942620, 79071217228, 757310811912, 7305728683824, 70923966744609, 692370887676567, 6792525607165935, 66933512163735000, 662190712902022017, 6574831459429388169, 65494637699437417584
Offset: 0

Views

Author

N. J. A. Sloane, Jun 14 2014

Keywords

Crossrefs

Programs

  • Maple
    a := proc(n) option remember; if n <= 1 then return 1 fi;
    (a(n - 2)*(-800*n^3 + 3024*n^2 - 3184*n + 672) + a(n - 1)*(3275*n^3 - 7467*n^2 +
    5038*n - 1008))/(300*n^3 - 234*n^2 - 192*n) end:
    seq(a(n), n = 0..22);  # Peter Luschny, Apr 13 2024
  • Mathematica
    a[n_] := 3^(n - Boole[n>0]) Hypergeometric2F1[1 - n, -2 n, 2, 1/3];
    Table[a[n], {n, 0, 22}]  (* Peter Luschny, Apr 12 2024 *)
  • PARI
    a(n) = sum(k=0, n, 3^k*(-2)^(n-k)*binomial(n, k)*binomial(2*n+k+1, n)/(2*n+k+1)); \\ Seiichi Manyama, Aug 12 2023

Formula

From Seiichi Manyama, Aug 12 2023: (Start)
The following statements are equivalent:
The g.f. satisfies A(x) = 1 + x*A(x)^3 / (1 - 2*x*A(x)^2).
a(n) = Sum_{k=0..n} 3^k * (-2)^(n-k) * binomial(n, k) * binomial(2*n+k+1, n) / (2*n + k + 1).
a(n) = (1/n) * Sum_{k=1..n} 3^(n-k) * binomial(n, k) * binomial(2*n, k-1) for n > 0.
a(n) = (1/n) * Sum_{k=0..n-1} 2^k * binomial(n, k)*binomial(3*n-k, n-1-k) for n > 0.
(End)
The above formula is proved in Theorem 4.1 of the Jun Yan link to be the number of Hyposylvester classes of 3-multiparking functions of length n. - Jun Yan, Apr 12 2024
a(n) ~ 2^(5*n+1) / (sqrt(5*Pi) * n^(3/2) * 3^(n+1)). - Vaclav Kotesovec, Apr 12 2024
a(n) = 3^(n - 1) * hypergeom([1 - n, -2*n], [2], 1/3) for n > 0. - Peter Luschny, Apr 12 2024
G.f. A(x) = 1 + series_reversion( x/((1 + 3*x)*(1 + x)^2) ). - Peter Bala, Sep 10 2024

Extensions

Name clarified by Jun Yan, Apr 12 2024