A243701 Primes represented by the indefinite quadratic form x^2 + 13xy - 9y^2.
5, 59, 131, 139, 241, 269, 271, 359, 409, 541, 569, 599, 661, 701, 761, 859, 881, 911, 941, 1021, 1091, 1109, 1291, 1399, 1439, 1481, 1549, 1559, 1579, 1609, 1619, 1931, 1999, 2011, 2029, 2089, 2099, 2111, 2141, 2251, 2399, 2459, 2521, 2711, 2729, 2731, 2749
Offset: 1
Keywords
Links
- Will Jagy et al.,Positive primes represented by indefinite binary quadratic form", MathOverflow # 171807, 2014.
- Will Jagy et al., Positive Primes represented by an indefinite binary form, reducing poly degree from 8 to 4, MathOverflow # 171846, 2014.
- Peter Luschny, Binary Quadratic Forms, GitHub 2024.
- N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
Programs
-
PARI
fc(a,b,c,M) = { my(t1=List(),t2); forprime(p=2,prime(M), t2 = qfbsolve(Qfb(a,b,c),p); if(t2 != 0, listput(t1,p)) ); Vec(t1) }; fc(1,13,-9,600)
-
SageMath
load('https://raw.githubusercontent.com/PeterLuschny/BinaryQuadraticForms/main/BinaryQF.sage') Q = binaryQF([1, 13, -9]) print(Q.represented_positives(2750, 'prime')) # Peter Luschny, May 04 2024
Comments