cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A243716 Irregular triangle read by rows: T(n, k) = number of inequivalent (mod the dihedral group D_8 of order 8) ways to place k nonattacking knights on an n X n board.

Original entry on oeis.org

1, 1, 2, 1, 1, 3, 7, 9, 6, 2, 3, 18, 40, 66, 49, 30, 8, 3, 6, 43, 195, 609, 1244, 1767, 1710, 1148, 510, 154, 31, 6, 1, 6, 83, 618, 3375, 12329, 32524, 61731, 86748, 90059, 70128, 40770, 18053, 6089, 1643, 344, 61, 7, 1, 10, 156, 1751, 14181, 81900, 348541
Offset: 1

Views

Author

Heinrich Ludwig, Jun 10 2014

Keywords

Comments

The triangle is irregularly shaped: 1 <= k <= A030978(n). A030978(n) is the maximal number of knights that can be placed on an n X n board.
First row corresponds to n = 1.
Counting "inequivalent ways" means: Rotations or reflections of a placement of knights on the board are considered to be the same placement.

Examples

			The triangle begins:
  1;
  1,  2,   1,   1;
  3,  7,   9,   6,    2;
  3, 18,  40,  66,   49,   30,    8,    3;
  6, 43, 195, 609, 1244, 1767, 1710, 1148, 510, 154, 31, 6, 1;
  ...
		

Crossrefs

Cf. A030978, A008805 (column 1), A243717 (column 2), A243718 (column 3), A243719 (column 4), A243720 (column 5).

A243717 Number of inequivalent (mod D_4) ways to place 2 nonattacking knights on an n X n board.

Original entry on oeis.org

2, 7, 18, 43, 83, 156, 257, 418, 624, 925, 1292, 1797, 2393, 3178, 4083, 5236, 6542, 8163, 9974, 12175, 14607, 17512, 20693, 24438, 28508, 33241, 38352, 44233, 50549, 57750, 65447, 74152, 83418, 93823, 104858, 117171, 130187, 144628, 159849, 176650, 194312
Offset: 2

Views

Author

Heinrich Ludwig, Jun 10 2014

Keywords

Comments

Rotations or reflections of a placement are considered as the same. If they are distinguished, numbers are A172132.

Crossrefs

Programs

  • Magma
    [ (-33+(-1)^n+4*(9+(-1)^n)*n-2*(1+(-1)^n)*n^2+2*n^4)/32: n in [2..50]]; // Wesley Ivan Hurt, Jun 11 2014
  • Maple
    A243717:=n->(-33+(-1)^n+4*(9+(-1)^n)*n-2*(1+(-1)^n)*n^2+2*n^4)/32; seq(A243717(n), n=2..50); # Wesley Ivan Hurt, Jun 11 2014
  • Mathematica
    Table[(-33 + (-1)^n + 4*(9 + (-1)^n)*n - 2*(1 + (-1)^n)*n^2 + 2*n^4)/
    32, {n, 2, 50}] (* Wesley Ivan Hurt, Jun 11 2014 *)
  • PARI
    Vec(x^2*(x^6-3*x^4-5*x^3-3*x-2)/((x-1)^5*(x+1)^3) + O(x^100)) \\ Colin Barker, Jun 10 2014
    

Formula

a(n) = (n^4 - 2*n^2 + 20*n - 16 + IF(MOD(n, 2) = 1)*(2*n^2 - 4*n - 1))/16.
a(n) = (-33+(-1)^n+4*(9+(-1)^n)*n-2*(1+(-1)^n)*n^2+2*n^4)/32. - Colin Barker, Jun 10 2014
G.f.: x^2*(x^6-3*x^4-5*x^3-3*x-2) / ((x-1)^5*(x+1)^3). - Colin Barker, Jun 10 2014

A243719 Number of inequivalent (mod D_8) ways to place 4 nonattacking knights on an n X n board.

Original entry on oeis.org

1, 6, 66, 609, 3375, 14181, 47485, 136085, 342739, 784059, 1653033, 3267471, 6107271, 10901405, 18683285, 30934341, 49659915, 77611995, 118386689, 176753639, 258774303, 372270981, 526962861, 735113445, 1011678595, 1375177451, 1847843545, 2456771055, 3234056439
Offset: 2

Views

Author

Heinrich Ludwig, Jun 19 2014

Keywords

Crossrefs

Programs

  • Magma
    [1,6,66,609] cat [(n^8 - 54*n^6 + 144*n^5 + 1048*n^4 - 5280*n^3 - 2432*n^2 + 52800*n - 78912 + (1 - (-1)^n)/2*(14*n^4 - 48*n^3 - 158*n^2 + 768*n - 723))/192: n in [6..30]]; // Vincenzo Librandi, Jun 21 2014
  • Mathematica
    Drop[CoefficientList[Series[411 + 171*x + 38*x^2 - 5*x^3 - 15*x^4 - 6*x^5 - (411 - 1473*x - 236*x^2 + 6588*x^3 - 5073*x^4 - 11179*x^5 + 13200*x^6 + 4572*x^7 - 19047*x^8 - 991*x^9 + 9564*x^10 - 1776*x^11 - 1955*x^12 + 675*x^13) / ((1-x)^9*(1+x)^5), {x, 0, 20}], x],2] (* Vaclav Kotesovec, Jun 19 2014 *)

Formula

a(n) = (n^8 - 54*n^6 + 144*n^5 + 1048*n^4 - 5280*n^3 - 2432*n^2 + 52800*n - 78912 + (1 - (-1)^n)/2*(14*n^4 - 48*n^3 - 158*n^2 + 768*n - 723))/192 for n >= 6.
G.f.: 411 + 171*x + 38*x^2 - 5*x^3 - 15*x^4 - 6*x^5 - (411 - 1473*x - 236*x^2 + 6588*x^3 - 5073*x^4 - 11179*x^5 + 13200*x^6 + 4572*x^7 - 19047*x^8 - 991*x^9 + 9564*x^10 - 1776*x^11 - 1955*x^12 + 675*x^13) / ((1-x)^9*(1+x)^5). - Vaclav Kotesovec, Jun 19 2014

A243720 Number of inequivalent (mod D_8) ways to place 5 nonattacking knights on an n X n board.

Original entry on oeis.org

2, 49, 1244, 12329, 81900, 398907, 1562362, 5153001, 14907120, 38753358, 92417760, 204977323, 427812496, 847346181, 1604300270
Offset: 3

Views

Author

Heinrich Ludwig, Jun 19 2014

Keywords

Crossrefs

Formula

a(n) = (n^10 - 90*n^8 + 240*n^7 + 3235*n^6)/960 + O(n^5) for n >= 8.
Showing 1-4 of 4 results.