A243747 Expansion of (phi(q) - phi(q^2))^2 / 4 in powers of q where phi() is a Ramanujan theta function.
1, -2, 1, 2, -2, 0, 1, -2, 4, -2, -2, 2, 0, 0, 1, 0, -1, -2, 4, 0, -2, 0, -2, 2, 4, -4, 0, 2, 0, 0, 1, -4, 2, 0, -1, 2, -2, 0, 4, 0, 0, -2, -2, 2, 0, 0, -2, 0, 5, -4, 4, 2, -4, 0, 0, -4, 4, -2, 0, 2, 0, 0, 1, 4, -4, -2, 2, 0, 0, 0, -1, 0, 4, -2, -2, 0, 0, 0
Offset: 2
Keywords
Examples
G.f. = q^2 - 2*q^3 + q^4 + 2*q^5 - 2*q^6 + q^8 - 2*q^9 + 4*q^10 - 2*q^11 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 2..2500
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Crossrefs
CF. A143259.
Programs
-
Magma
Basis( ModularForms( Gamma1(8), 1), 70) [3];
-
Mathematica
a[ n_] := SeriesCoefficient[ (EllipticTheta[ 3, 0, q] - EllipticTheta[ 3, 0, q^2])^2 / 4, {q, 0, n}];
-
PARI
{a(n) = if( n<2, 0, sum(k=1, n-1, (issquare(k) - issquare(2*k)) * (issquare(n - k) - issquare(2*n - 2*k))))};
-
Sage
ModularForms( Gamma1(8), 1, prec=70).2
Formula
Expansion of (q * f(-q, -q^7)^2 / psi(-q))^2 in powers of q where psi(), f() are Ramanujan theta functions.
Euler transform of period 8 sequence [-2, 0, 2, 2, 2, 0, -2, -2, ...].
G.f.: (theta_3(x) - theta_3(x^2))^2 / 4 = (Sum_{k>0} x^(k^2) - x^(2k^2))^2.
Convolution square of A143259.
Comments