A243767 Decimal prime numbers which can be split into three equal-sized prime parts whose sum is prime. No leading zeros.
223, 227, 337, 353, 373, 557, 577, 733, 757, 773, 111119, 111317, 111323, 111337, 111347, 111373, 111731, 111773, 111779, 111913, 111953, 111959, 111973, 111997, 112337, 112397, 112913, 112919, 112967, 112997, 113111, 113117, 113131, 113147, 113159, 113161
Offset: 1
Examples
Prime number 112337 -> 11(prime) + 23(prime) + 37(prime) = 71(prime).
Links
- Andreas Boe, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Join[Select[FromDigits/@Select[Tuples[Prime[Range[4]],3],PrimeQ[Total[ #]]&],PrimeQ],Select[ FromDigits[Flatten[IntegerDigits/@#]]&/@Select[ Tuples[ Prime[Range[5,25]],3],PrimeQ[Total[#]]&],PrimeQ]] (* The program generates the first 1283 terms of the sequence, i.e., all terms with six digits or less. *) (* Harvey P. Dale, Dec 04 2022 *)
-
PARI
first(n) = { my(res = List()); for(i = 1, oo, pow10 = 10^i; pow100 = 100^i; forprime(p = 10^(i-1), 10^i, firstidigs = pow100 * p; forprime(q = 10^(i-1), 10^i, pandq = p+q; first2idigs = firstidigs + pow10*q; forprime(r = 10^(i-1), 10^i, if(isprime(pandq + r), c = first2idigs + r; if(isprime(c), listput(res, c); if(#res >= n, return(res) ) ) ) ) ) ) ) } \\ David A. Corneth, Dec 04 2022
-
Python
from sympy import isprime, primerange from itertools import count, islice, product def agen(): yield from filter(isprime, (a*10**(2*i) + b*10**i + c for i in count(1) for a, b, c in product(primerange(10**(i-1), 10**i), repeat=3) if isprime(a+b+c))) print(list(islice(agen(), 36))) # Michael S. Branicky, Dec 04 2022
Comments