cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A243767 Decimal prime numbers which can be split into three equal-sized prime parts whose sum is prime. No leading zeros.

Original entry on oeis.org

223, 227, 337, 353, 373, 557, 577, 733, 757, 773, 111119, 111317, 111323, 111337, 111347, 111373, 111731, 111773, 111779, 111913, 111953, 111959, 111973, 111997, 112337, 112397, 112913, 112919, 112967, 112997, 113111, 113117, 113131, 113147, 113159, 113161
Offset: 1

Views

Author

Andreas Boe, Jun 10 2014

Keywords

Comments

It appears that the sequence is infinite.

Examples

			Prime number 112337 -> 11(prime) + 23(prime) + 37(prime) = 71(prime).
		

Crossrefs

Subset of A243766.
Cf. A006879.

Programs

  • Mathematica
    Join[Select[FromDigits/@Select[Tuples[Prime[Range[4]],3],PrimeQ[Total[ #]]&],PrimeQ],Select[ FromDigits[Flatten[IntegerDigits/@#]]&/@Select[ Tuples[ Prime[Range[5,25]],3],PrimeQ[Total[#]]&],PrimeQ]] (* The program generates the first 1283 terms of the sequence, i.e., all terms with six digits or less. *) (* Harvey P. Dale, Dec 04 2022 *)
  • PARI
    first(n) = { my(res = List()); for(i = 1, oo, pow10 = 10^i; pow100 = 100^i; forprime(p = 10^(i-1), 10^i, firstidigs = pow100 * p; forprime(q = 10^(i-1), 10^i, pandq = p+q; first2idigs = firstidigs + pow10*q; forprime(r = 10^(i-1), 10^i, if(isprime(pandq + r), c = first2idigs + r; if(isprime(c), listput(res, c); if(#res >= n, return(res) ) ) ) ) ) ) ) } \\ David A. Corneth, Dec 04 2022
    
  • Python
    from sympy import isprime, primerange
    from itertools import count, islice, product
    def agen(): yield from filter(isprime, (a*10**(2*i) + b*10**i + c for i in count(1) for a, b, c in product(primerange(10**(i-1), 10**i), repeat=3) if isprime(a+b+c)))
    print(list(islice(agen(), 36))) # Michael S. Branicky, Dec 04 2022