A243822 Number of k < n such that rad(k) | n but k does not divide n, where rad = A007947.
0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 2, 0, 2, 1, 0, 0, 4, 0, 2, 1, 3, 0, 3, 0, 3, 0, 2, 0, 10, 0, 0, 2, 4, 1, 5, 0, 4, 2, 3, 0, 11, 0, 3, 2, 4, 0, 5, 0, 6, 2, 3, 0, 8, 1, 3, 2, 4, 0, 14, 0, 4, 2, 0, 1, 14, 0, 4, 2, 12, 0, 6, 0, 5, 3, 4, 1, 15, 0, 4, 0, 5, 0, 16, 1, 5, 3, 3, 0, 20, 1, 4, 3, 5, 1, 8, 0, 7, 2, 6
Offset: 1
Keywords
Examples
From _Michael De Vlieger_, Aug 11 2024: (Start) Let S(n) = row n of A162306 and let D(n) = row n of A027750.a(2) = 0 since S(2) \ D(2) = {1, 2} \ {1, 2} is null. a(10) = 2 since S(10) \ D(10) = {1, 2, 4, 5, 8, 10} \ {1, 2, 5, 10} = {4, 8}.a(16) = 0 since S(16) \ D(16) = {1, 2, 4, 8, 16} \ {1, 2, 4, 8, 16} is null, etc.Table of a(n) and S(n) \ D(n): n a(n) row n of A272618. --------------------------- 6 1 {4} 10 2 {4, 8} 12 2 {8, 9} 14 2 {4, 8} 15 1 {9} 18 4 {4, 8, 12*, 16} 20 2 {8, 16} 21 1 {9} 22 3 {4, 8, 16} 24 3 {9, 16, 18*} 26 3 {4, 8, 16} 28 2 {8, 16} 30 10 {4, 8, 9, 12, 16, 18, 20, 24, 25, 27} Terms in A272618 marked with an asterisk are counted by A355432. All other terms are counted by A361235. (End)
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
- Michael De Vlieger, Exploring Number Bases as Tools, ACM Inroads, March 2012, Vol. 3, No. 1, pp. 4-12.
- Michael De Vlieger, Regular and coregular numbers, ResearchGate, 2024.
- Michael De Vlieger, Log log scatterplot of a(n), n = 1..2^20
Crossrefs
Programs
-
Mathematica
Table[Count[Range[n], ?(And[Divisible[n, Times @@ FactorInteger[#][[All, 1]]], ! Divisible[n, #]] &)], {n, 120}] (* _Michael De Vlieger, Aug 11 2024 *)
Formula
a(n) = (Sum_{1<=k<=n, gcd(n,k)=1} mu(k)*floor(n/k)) - tau(n). - Michael De Vlieger, May 10 2016, after Benoit Cloitre at A010846.
From Michael De Vlieger, Aug 11 2024" (Start)
a(n) = number of terms in row n of A272618.
a(n) = sum of row n of A304570. (End)
Extensions
New name from David James Sycamore, Aug 11 2024
Comments