cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A243752 Number T(n,k) of Dyck paths of semilength n having exactly k (possibly overlapping) occurrences of the consecutive step pattern given by the binary expansion of n, where 1=U=(1,1) and 0=D=(1,-1); triangle T(n,k), n>=0, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 1, 3, 1, 1, 11, 2, 9, 16, 12, 4, 1, 1, 57, 69, 5, 127, 161, 98, 35, 7, 1, 323, 927, 180, 1515, 1997, 1056, 280, 14, 4191, 5539, 3967, 1991, 781, 244, 64, 17, 1, 1, 10455, 25638, 18357, 4115, 220, 1, 20705, 68850, 77685, 34840, 5685, 246, 1
Offset: 0

Views

Author

Alois P. Heinz, Jun 09 2014

Keywords

Examples

			Triangle T(n,k) begins:
: n\k :    0     1     2     3    4    5  ...
+-----+----------------------------------------------------------
:  0  :    1;                                 [row  0 of A131427]
:  1  :    0,    1;                           [row  1 of A131427]
:  2  :    0,    1,    1;                     [row  2 of A090181]
:  3  :    1,    3,    1;                     [row  3 of A001263]
:  4  :    1,   11,    2;                     [row  4 of A091156]
:  5  :    9,   16,   12,    4,   1;          [row  5 of A091869]
:  6  :    1,   57,   69,    5;               [row  6 of A091156]
:  7  :  127,  161,   98,   35,   7,   1;     [row  7 of A092107]
:  8  :  323,  927,  180;                     [row  8 of A091958]
:  9  : 1515, 1997, 1056,  280,  14;          [row  9 of A135306]
: 10  : 4191, 5539, 3967, 1991, 781, 244, ... [row 10 of A094507]
		

Crossrefs

A243753 Number A(n,k) of Dyck paths of semilength n avoiding the consecutive step pattern given by the binary expansion of k, where 1=U=(1,1) and 0=D=(1,-1); square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 2, 1, 1, 0, 0, 0, 1, 1, 2, 1, 4, 1, 1, 0, 0, 0, 1, 1, 2, 4, 1, 9, 1, 1, 0, 0, 0, 1, 1, 2, 4, 9, 1, 21, 1, 1, 0, 0, 0, 1, 1, 1, 4, 9, 21, 1, 51, 1, 1, 0, 0, 0
Offset: 0

Views

Author

Alois P. Heinz, Jun 09 2014

Keywords

Examples

			Square array A(n,k) begins:
  1, 1, 1, 1, 1,   1, 1,   1,   1,    1, ...
  0, 0, 0, 1, 1,   1, 1,   1,   1,    1, ...
  0, 0, 0, 1, 1,   1, 1,   2,   2,    2, ...
  0, 0, 0, 1, 1,   2, 1,   4,   4,    4, ...
  0, 0, 0, 1, 1,   4, 1,   9,   9,    9, ...
  0, 0, 0, 1, 1,   9, 1,  21,  21,   23, ...
  0, 0, 0, 1, 1,  21, 1,  51,  51,   63, ...
  0, 0, 0, 1, 1,  51, 1, 127, 127,  178, ...
  0, 0, 0, 1, 1, 127, 1, 323, 323,  514, ...
  0, 0, 0, 1, 1, 323, 1, 835, 835, 1515, ...
		

Crossrefs

Columns give: 0, 1, 2: A000007, 3, 4, 6: A000012, 5: A001006(n-1) for n>0, 7, 8, 14: A001006, 9: A135307, 10: A078481 for n>0, 11, 13: A105633(n-1) for n>0, 12: A082582, 15, 16: A036765, 19, 27: A114465, 20, 24, 26: A157003, 21: A247333, 25: A187256(n-1) for n>0.
Main diagonal gives A243754 or column k=0 of A243752.

Programs

  • Maple
    A:= proc(n, k) option remember; local b, m, r, h;
          if k<2 then return `if`(n=0, 1, 0) fi;
          m:= iquo(k, 2, 'r'); h:= 2^ilog2(k); b:=
          proc(x, y, t) option remember; `if`(y<0 or y>x, 0, `if`(x=0, 1,
            `if`(t=m and r=1, 0, b(x-1, y+1, irem(2*t+1, h)))+
            `if`(t=m and r=0, 0, b(x-1, y-1, irem(2*t, h)))))
          end; forget(b);
          b(2*n, 0, 0)
        end:
    seq(seq(A(n, d-n), n=0..d), d=0..14);
  • Mathematica
    A[n_, k_] := A[n, k] = Module[{b, m, r, h}, If[k<2, Return[If[n == 0, 1, 0]]]; {m, r} = QuotientRemainder[k, 2]; h = 2^Floor[Log[2, k]]; b[x_, y_, t_] := b[x, y, t] = If[y<0 || y>x, 0, If[x == 0, 1, If[t == m && r == 1, 0, b[x-1, y+1, Mod[2*t+1, h]]] + If[t == m && r == 0, 0, b[x-1, y-1, Mod[2*t, h]]]]]; b[2*n, 0, 0]]; Table[ Table[A[n, d-n], {n, 0, d}], {d, 0, 14}] // Flatten (* Jean-François Alcover, Jan 27 2015, after Alois P. Heinz *)

A243827 Number A(n,k) of Dyck paths of semilength n having exactly one occurrence of the consecutive step pattern given by the binary expansion of k, where 1=U=(1,1) and 0=D=(1,-1); square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 3, 1, 0, 0, 0, 0, 1, 4, 6, 1, 0, 0, 0, 0, 1, 2, 11, 10, 1, 0, 0, 0, 0, 0, 4, 6, 26, 15, 1, 0, 0, 0, 0, 0, 1, 11, 16, 57, 21, 1, 0, 0, 0, 0, 0, 1, 4, 26, 45, 120, 28, 1, 0, 0, 0, 0, 1, 1, 5, 15, 57, 126, 247, 36, 1, 0, 0
Offset: 0

Views

Author

Alois P. Heinz, Jun 11 2014

Keywords

Examples

			Square array A(n,k) begins:
  0, 0, 0,  0,   0,    0,   0,    0,    0,    0, ...
  1, 1, 1,  0,   0,    0,   0,    0,    0,    0, ...
  0, 0, 1,  1,   1,    1,   1,    0,    0,    0, ...
  0, 0, 1,  3,   4,    2,   4,    1,    1,    1, ...
  0, 0, 1,  6,  11,    6,  11,    4,    5,    5, ...
  0, 0, 1, 10,  26,   16,  26,   15,   21,   17, ...
  0, 0, 1, 15,  57,   45,  57,   50,   78,   54, ...
  0, 0, 1, 21, 120,  126, 120,  161,  274,  177, ...
  0, 0, 1, 28, 247,  357, 247,  504,  927,  594, ...
  0, 0, 1, 36, 502, 1016, 502, 1554, 3061, 1997, ...
		

Crossrefs

Columns k=2-10 give: A000012(n) for n>0, A000217(n-1) for n>0, A000295(n-1) for n>0, A005717(n-1) for n>1, A000295(n-1) for n>0, A014532(n-2) for n>2, A108863, A244235, A244236.
Main diagonal gives A243770 or column k=1 of A243752.

A243828 Number A(n,k) of Dyck paths of semilength n having exactly two (possibly overlapping) occurrences of the consecutive step pattern given by the binary expansion of k, where 1=U=(1,1) and 0=D=(1,-1); square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

0, 0, 0, 0, 0, 2, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 1, 6, 0, 0, 0, 0, 0, 0, 6, 10, 0, 0, 0, 0, 0, 1, 2, 20, 15, 0, 0, 0, 0, 0, 0, 3, 15, 50, 21, 0, 0, 0, 0, 0, 0, 2, 12, 69, 105, 28, 0, 0, 0, 0, 0, 0, 1, 15, 40, 252, 196, 36, 0, 0, 0, 0, 0, 0, 0, 5, 69, 135, 804, 336, 45, 0, 0
Offset: 0

Views

Author

Alois P. Heinz, Jun 11 2014

Keywords

Examples

			Square array A(n,k) begins:
  0, 0,  0,   0,    0,    0,    0,    0,   0,    0, ...
  0, 0,  0,   0,    0,    0,    0,    0,   0,    0, ...
  2, 2,  1,   0,    0,    0,    0,    0,   0,    0, ...
  0, 0,  3,   1,    0,    1,    0,    0,   0,    0, ...
  0, 0,  6,   6,    2,    3,    2,    1,   0,    0, ...
  0, 0, 10,  20,   15,   12,   15,    5,   0,    2, ...
  0, 0, 15,  50,   69,   40,   69,   24,   3,   15, ...
  0, 0, 21, 105,  252,  135,  252,   98,  28,   69, ...
  0, 0, 28, 196,  804,  441,  804,  378, 180,  273, ...
  0, 0, 36, 336, 2349, 1428, 2349, 1386, 954, 1056, ...
		

Crossrefs

Main diagonal gives A243771 or column k=2 of A243752.

A243829 Number A(n,k) of Dyck paths of semilength n having exactly three (possibly overlapping) occurrences of the consecutive step pattern given by the binary expansion of k, where 1=U=(1,1) and 0=D=(1,-1); square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 5, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 1, 20, 0, 0, 0, 0, 0, 0, 0, 10, 50, 0, 0, 0, 0, 0, 0, 1, 0, 50, 105, 0, 0, 0, 0, 0, 0, 0, 4, 5, 175, 196, 0, 0, 0, 0, 0, 0, 0, 0, 20, 56, 490, 336, 0, 0, 0, 0, 0, 0, 0, 1, 5, 80, 364, 1176, 540, 0, 0
Offset: 0

Views

Author

Alois P. Heinz, Jun 11 2014

Keywords

Examples

			Square array A(n,k) begins:
  0, 0,   0,    0,    0,    0,    0,   0,  0,   0, ...
  0, 0,   0,    0,    0,    0,    0,   0,  0,   0, ...
  0, 0,   0,    0,    0,    0,    0,   0,  0,   0, ...
  5, 5,   1,    0,    0,    0,    0,   0,  0,   0, ...
  0, 0,   6,    1,    0,    1,    0,   0,  0,   0, ...
  0, 0,  20,   10,    0,    4,    0,   1,  0,   0, ...
  0, 0,  50,   50,    5,   20,    5,   6,  0,   0, ...
  0, 0, 105,  175,   56,   80,   56,  35,  0,   5, ...
  0, 0, 196,  490,  364,  315,  364, 168,  0,  49, ...
  0, 0, 336, 1176, 1800, 1176, 1800, 750, 12, 280, ...
		

Crossrefs

Main diagonal gives A243772 or column k=3 of A243752.

A243830 Number A(n,k) of Dyck paths of semilength n having exactly four (possibly overlapping) occurrences of the consecutive step pattern given by the binary expansion of k, where 1=U=(1,1) and 0=D=(1,-1); square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 14, 0, 0, 0, 0, 14, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 10, 0, 0, 0, 0, 0, 0, 0, 1, 50, 0, 0, 0, 0, 0, 0, 0, 0, 15, 175, 0, 0, 0, 0, 0, 0, 0, 1, 0, 105, 490, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 490, 1176, 0, 0, 0, 0, 0, 0, 0, 0, 0, 30, 14, 1764, 2520, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 140, 210, 5292, 4950, 0, 0
Offset: 0

Views

Author

Alois P. Heinz, Jun 11 2014

Keywords

Examples

			Square array A(n,k) begins:
   0,  0,    0,    0,   0,   0,   0,   0, 0,  0, ...
   0,  0,    0,    0,   0,   0,   0,   0, 0,  0, ...
   0,  0,    0,    0,   0,   0,   0,   0, 0,  0, ...
   0,  0,    0,    0,   0,   0,   0,   0, 0,  0, ...
  14, 14,    1,    0,   0,   0,   0,   0, 0,  0, ...
   0,  0,   10,    1,   0,   1,   0,   0, 0,  0, ...
   0,  0,   50,   15,   0,   5,   0,   1, 0,  0, ...
   0,  0,  175,  105,   0,  30,   0,   7, 0,  0, ...
   0,  0,  490,  490,  14, 140,  14,  48, 0,  0, ...
   0,  0, 1176, 1764, 210, 630, 210, 264, 0, 14, ...
		

Crossrefs

Main diagonal gives A243773 or column k=4 of A243752.

A243831 Number A(n,k) of Dyck paths of semilength n having exactly five (possibly overlapping) occurrences of the consecutive step pattern given by the binary expansion of k, where 1=U=(1,1) and 0=D=(1,-1); square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 42, 0, 0, 0, 0, 0, 42, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 15, 0, 0, 0, 0, 0, 0, 0, 0, 1, 105, 0, 0, 0, 0, 0, 0, 0, 0, 0, 21, 490, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 196, 1764, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 1176, 5292, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 42, 0, 5292, 13860, 0, 0
Offset: 0

Views

Author

Alois P. Heinz, Jun 11 2014

Keywords

Examples

			Square array A(n,k) begins:
   0,  0,    0,    0,  0,    0,  0,   0, 0, 0,   0, ...
   0,  0,    0,    0,  0,    0,  0,   0, 0, 0,   0, ...
   0,  0,    0,    0,  0,    0,  0,   0, 0, 0,   0, ...
   0,  0,    0,    0,  0,    0,  0,   0, 0, 0,   0, ...
   0,  0,    0,    0,  0,    0,  0,   0, 0, 0,   0, ...
  42, 42,    1,    0,  0,    0,  0,   0, 0, 0,   0, ...
   0,  0,   15,    1,  0,    1,  0,   0, 0, 0,   1, ...
   0,  0,  105,   21,  0,    6,  0,   1, 0, 0,   1, ...
   0,  0,  490,  196,  0,   42,  0,   8, 0, 0,  13, ...
   0,  0, 1764, 1176,  0,  224,  0,  63, 0, 0,  52, ...
   0,  0, 5292, 5292, 42, 1134, 42, 390, 0, 0, 244, ...
		

Crossrefs

Main diagonal gives A243774 or column k=5 of A243752.

A243832 Number A(n,k) of Dyck paths of semilength n having exactly six (possibly overlapping) occurrences of the consecutive step pattern given by the binary expansion of k, where 1=U=(1,1) and 0=D=(1,-1); square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 132, 0, 0, 0, 0, 0, 0, 132, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 21, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 196, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 28, 1176, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 336, 5292, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 0, 2520, 19404, 0, 0
Offset: 0

Views

Author

Alois P. Heinz, Jun 11 2014

Keywords

Examples

			Square array A(n,k) begins:
    0,   0,    0,    0, 0,   0, 0,  0, 0, 0,  0, ...
    0,   0,    0,    0, 0,   0, 0,  0, 0, 0,  0, ...
    0,   0,    0,    0, 0,   0, 0,  0, 0, 0,  0, ...
    0,   0,    0,    0, 0,   0, 0,  0, 0, 0,  0, ...
    0,   0,    0,    0, 0,   0, 0,  0, 0, 0,  0, ...
    0,   0,    0,    0, 0,   0, 0,  0, 0, 0,  0, ...
  132, 132,    1,    0, 0,   0, 0,  0, 0, 0,  0, ...
    0,   0,   21,    1, 0,   1, 0,  0, 0, 0,  1, ...
    0,   0,  196,   28, 0,   7, 0,  1, 0, 0,  1, ...
    0,   0, 1176,  336, 0,  56, 0,  9, 0, 0, 15, ...
    0,   0, 5292, 2520, 0, 336, 0, 80, 0, 0, 64, ...
		

Crossrefs

Main diagonal gives A243775 or column k=6 of A243752.

A243834 Number A(n,k) of Dyck paths of semilength n having exactly eight (possibly overlapping) occurrences of the consecutive step pattern given by the binary expansion of k, where 1=U=(1,1) and 0=D=(1,-1); square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1430, 0, 0, 0, 0, 0, 0, 0, 0, 1430, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 36, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 540, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 45, 4950, 0, 0
Offset: 0

Views

Author

Alois P. Heinz, Jun 11 2014

Keywords

Examples

			Square array A(n,k) begins:
     0,    0,    0,   0, 0,  0, 0,  0, 0, 0,  0, 0, ...
     0,    0,    0,   0, 0,  0, 0,  0, 0, 0,  0, 0, ...
     0,    0,    0,   0, 0,  0, 0,  0, 0, 0,  0, 0, ...
     0,    0,    0,   0, 0,  0, 0,  0, 0, 0,  0, 0, ...
     0,    0,    0,   0, 0,  0, 0,  0, 0, 0,  0, 0, ...
     0,    0,    0,   0, 0,  0, 0,  0, 0, 0,  0, 0, ...
     0,    0,    0,   0, 0,  0, 0,  0, 0, 0,  0, 0, ...
     0,    0,    0,   0, 0,  0, 0,  0, 0, 0,  0, 0, ...
  1430, 1430,    1,   0, 0,  0, 0,  0, 0, 0,  0, 0, ...
     0,    0,   36,   1, 0,  1, 0,  0, 0, 0,  1, 0, ...
     0,    0,  540,  45, 0,  9, 0,  1, 0, 0,  1, 0, ...
     0,    0, 4950, 825, 0, 90, 0, 11, 0, 0, 19, 0, ...
		

Crossrefs

Main diagonal gives A243777 or column k=8 of A243752.

A243835 Number A(n,k) of Dyck paths of semilength n having exactly nine (possibly overlapping) occurrences of the consecutive step pattern given by the binary expansion of k, where 1=U=(1,1) and 0=D=(1,-1); square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4862, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4862, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 45, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 825, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 55, 9075, 0, 0
Offset: 0

Views

Author

Alois P. Heinz, Jun 11 2014

Keywords

Examples

			Square array A(n,k) begins:
     0,    0,   0,  0, 0,  0, 0, 0, 0, 0, 0, 0, ...
     0,    0,   0,  0, 0,  0, 0, 0, 0, 0, 0, 0, ...
     0,    0,   0,  0, 0,  0, 0, 0, 0, 0, 0, 0, ...
     0,    0,   0,  0, 0,  0, 0, 0, 0, 0, 0, 0, ...
     0,    0,   0,  0, 0,  0, 0, 0, 0, 0, 0, 0, ...
     0,    0,   0,  0, 0,  0, 0, 0, 0, 0, 0, 0, ...
     0,    0,   0,  0, 0,  0, 0, 0, 0, 0, 0, 0, ...
     0,    0,   0,  0, 0,  0, 0, 0, 0, 0, 0, 0, ...
     0,    0,   0,  0, 0,  0, 0, 0, 0, 0, 0, 0, ...
  4862, 4862,   1,  0, 0,  0, 0, 0, 0, 0, 0, 0, ...
     0,    0,  45,  1, 0,  1, 0, 0, 0, 0, 1, 0, ...
     0,    0, 825, 55, 0, 10, 0, 1, 0, 0, 1, 0, ...
		

Crossrefs

Main diagonal gives A243778 or column k=9 of A243752.
Showing 1-10 of 12 results. Next