cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A243838 Number T(n,k) of Dyck paths of semilength n having exactly k (possibly overlapping) occurrences of the consecutive steps UDUUDDUUUUDUDDDDUDUD (with U=(1,1), D=(1,-1)); triangle T(n,k), n>=0, 0<=k<=max(0,floor((n-1)/9)), read by rows.

Original entry on oeis.org

1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16795, 1, 58783, 3, 208002, 10, 742865, 35, 2674314, 126, 9694383, 462, 35355954, 1716, 129638355, 6435, 477614390, 24310, 1767170813, 92376, 1, 6563767708, 352708, 4, 24464914958, 1352046, 16, 91477363405, 5200170, 65
Offset: 0

Views

Author

Alois P. Heinz, Jun 11 2014

Keywords

Comments

UDUUDDUUUUDUDDDDUDUD is a Dyck path that contains all sixteen consecutive step patterns of length 4.

Examples

			Triangle T(n,k) begins:
:  0 :           1;
:  1 :           1;
:  2 :           2;
:  3 :           5;
:  4 :          14;
:  5 :          42;
:  6 :         132;
:  7 :         429;
:  8 :        1430;
:  9 :        4862;
: 10 :       16795,       1;
: 11 :       58783,       3;
: 12 :      208002,      10;
: 13 :      742865,      35;
: 14 :     2674314,     126;
: 15 :     9694383,     462;
: 16 :    35355954,    1716;
: 17 :   129638355,    6435;
: 18 :   477614390,   24310;
: 19 :  1767170813,   92376,  1;
: 20 :  6563767708,  352708,  4;
: 21 : 24464914958, 1352046, 16;
		

Crossrefs

Row sums give A000108.
T(736522,k) = A243752(736522,k).
T(n,0) = A243753(n,736522).
Cf. A243820.

Programs

  • Maple
    b:= proc(x, y, t) option remember; `if`(y<0 or y>x, 0,
         `if`(x=0, 1, expand(b(x-1, y+1, [2, 2, 4, 5, 2, 4,
           8, 9, 10, 11, 2, 13, 5, 4, 2, 2, 18, 2, 20, 5][t])
          +`if`(t=20, z, 1) *b(x-1, y-1, [1, 3, 1, 3, 6, 7,
           1, 3, 3, 3, 12, 1, 14, 15, 16, 17, 1, 19, 1, 3][t]))))
        end:
    T:= n-> (p-> seq(coeff(p, z, i), i=0..degree(p)))(b(2*n, 0, 1)):
    seq(T(n), n=0..30);
  • Mathematica
    b[x_, y_, t_] := b[x, y, t] = If[x == 0, 1, Expand[If[y >= x - 1, 0, b[x - 1, y + 1, {2, 2, 4, 5, 2, 4, 8, 9, 10, 11, 2, 13, 5, 4, 2, 2, 18, 2, 20, 5}[[t]]]] + If[t == 20, z, 1]*If[y == 0, 0, b[x - 1, y - 1, {1, 3, 1, 3, 6, 7, 1, 3, 3, 3, 12, 1, 14, 15, 16, 17, 1, 19, 1, 3}[[t]]]]]];
    T[n_] := CoefficientList[b[2n, 0, 1], z];
    T /@ Range[0, 30] // Flatten (* Jean-François Alcover, Mar 27 2021, after Alois P. Heinz *)