A243838 Number T(n,k) of Dyck paths of semilength n having exactly k (possibly overlapping) occurrences of the consecutive steps UDUUDDUUUUDUDDDDUDUD (with U=(1,1), D=(1,-1)); triangle T(n,k), n>=0, 0<=k<=max(0,floor((n-1)/9)), read by rows.
1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16795, 1, 58783, 3, 208002, 10, 742865, 35, 2674314, 126, 9694383, 462, 35355954, 1716, 129638355, 6435, 477614390, 24310, 1767170813, 92376, 1, 6563767708, 352708, 4, 24464914958, 1352046, 16, 91477363405, 5200170, 65
Offset: 0
Examples
Triangle T(n,k) begins: : 0 : 1; : 1 : 1; : 2 : 2; : 3 : 5; : 4 : 14; : 5 : 42; : 6 : 132; : 7 : 429; : 8 : 1430; : 9 : 4862; : 10 : 16795, 1; : 11 : 58783, 3; : 12 : 208002, 10; : 13 : 742865, 35; : 14 : 2674314, 126; : 15 : 9694383, 462; : 16 : 35355954, 1716; : 17 : 129638355, 6435; : 18 : 477614390, 24310; : 19 : 1767170813, 92376, 1; : 20 : 6563767708, 352708, 4; : 21 : 24464914958, 1352046, 16;
Links
- Alois P. Heinz, Rows n = 0..350, flattened
Crossrefs
Programs
-
Maple
b:= proc(x, y, t) option remember; `if`(y<0 or y>x, 0, `if`(x=0, 1, expand(b(x-1, y+1, [2, 2, 4, 5, 2, 4, 8, 9, 10, 11, 2, 13, 5, 4, 2, 2, 18, 2, 20, 5][t]) +`if`(t=20, z, 1) *b(x-1, y-1, [1, 3, 1, 3, 6, 7, 1, 3, 3, 3, 12, 1, 14, 15, 16, 17, 1, 19, 1, 3][t])))) end: T:= n-> (p-> seq(coeff(p, z, i), i=0..degree(p)))(b(2*n, 0, 1)): seq(T(n), n=0..30);
-
Mathematica
b[x_, y_, t_] := b[x, y, t] = If[x == 0, 1, Expand[If[y >= x - 1, 0, b[x - 1, y + 1, {2, 2, 4, 5, 2, 4, 8, 9, 10, 11, 2, 13, 5, 4, 2, 2, 18, 2, 20, 5}[[t]]]] + If[t == 20, z, 1]*If[y == 0, 0, b[x - 1, y - 1, {1, 3, 1, 3, 6, 7, 1, 3, 3, 3, 12, 1, 14, 15, 16, 17, 1, 19, 1, 3}[[t]]]]]]; T[n_] := CoefficientList[b[2n, 0, 1], z]; T /@ Range[0, 30] // Flatten (* Jean-François Alcover, Mar 27 2021, after Alois P. Heinz *)
Comments