A243859 Primes p for which p^i + 4 is prime for i = 1, 3, 5 and 7.
7, 133153, 184039, 356929, 469363, 982843, 2154487, 2552713, 2686573, 3378103, 3847867, 4270069, 4341373, 4564363, 4584847, 4964899, 5366017, 5600989, 6185173, 6592609, 6595597, 6629683, 6768409, 8232277, 9028429, 9964177, 10009339, 12107089, 13266553, 13600189
Offset: 1
Keywords
Examples
p=7 is in this sequence as p + 4 = 11 (prime), p^3 + 4 = 347 (prime), p^5 + 4 = 16811 (prime), and p^7 + 4 = 823547 (prime).
Links
- Abhiram R Devesh, Table of n, a(n) for n = 1..141
Programs
-
Maple
p := 2: for n from 1 do if isprime(p+4) and isprime(p^3+4) and isprime(p^5+4) and isprime(p^7+4) then print(p) ; end if; p := nextprime(p) ; end do: # R. J. Mathar, Jun 13 2014
-
Mathematica
Select[Prime[Range[900000]],AllTrue[#^{1,3,5,7}+4,PrimeQ]&] (* Harvey P. Dale, Apr 12 2022 *)
-
Python
import sympy.ntheory as snt n=2 while n>1: n1=n+4 n2=((n**3)+4) n3=((n**5)+4) n4=((n**7)+4) ##Check if n1 , n2, n3 and n4 are also primes. if snt.isprime(n1)== True and snt.isprime(n2)== True and snt.isprime(n3)== True and snt.isprime(n4)== True: print(n, n1, n2, n3, n4) n=snt.nextprime(n)
Comments