A243862 Number of length n sequences on alphabet {0,1,2} that contain all of 00, 01, 02, 10, 11, 12, 20, 21, 22 as (possibly overlapping) contiguous subsequences.
216, 2160, 14544, 78840, 374568, 1623420, 6580848, 25350384, 93835368, 336429336, 1175333232, 4019312448, 13502627088, 44688347724, 146041135932, 472142876544, 1512373800624, 4806068123880, 15168176407512, 47586553527408, 148517566558116, 461424138047280
Offset: 10
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 10..1000
Programs
-
Maple
b:= proc(n, t, s) option remember; `if`(s={}, 3^n, `if`(nops(s)>n, 0, add(b(n-1, j, s minus {3*t+j}), j=0..2))) end: a:= n-> 3*b(n-1, 0, {$0..8}): seq(a(n), n=10..40); # Alois P. Heinz, Jun 13 2014
-
Mathematica
sol = Solve[{a == va(z^2 + z a + z d + z g),b == vb(z^2 + z a + z d + z g), c == vc (z^2 + z a + z d + z g), d == vd(z^2 + z b + z e + z h), e == ve(z^2 + z b + z e + z h), f == vf(z^2 + z b + z e + z h), g == vg(z^2 + z c + z f + z i), h == vh(z^2 + z c + z f + z i), i == vi(z^2 + z c + z f + z i)}, {a, b, c, d, e, f, g, h, i}]; vsub = {va -> ua - 1, vb -> ub - 1, vc -> uc - 1, vd -> ud - 1, ve -> ue - 1, vf -> uf - 1, vg -> ug - 1, vh -> uh - 1, vi -> ui - 1}; S = 1/(1 - 3z - a - b - c - d - e - f - g - h - i); Fz[ua_, ub_, uc_, ud_, ue_, uf_, ug_, uh_, ui_] = S/.sol/.vsub; tn = Table[Total[Map[Apply[Fz, #] &, Select[Tuples[{0, 1}, 9], Count[#, 0] == n &]]], {n, 1, 9}]; Drop[Flatten[CoefficientList[Series[1/(1 - 3z) - (Simplify[tn[[1]] - tn[[2]] + tn[[3]] - tn[[4]] + tn[[5]] - tn[[6]] + tn[[7]] - tn[[8]]] + tn[[9]]), {z, 0, 40}], z]], 10]
Formula
G.f.: 12 *x^10 *(4*x^31 -29*x^30 +4*x^29 +137*x^28 -47*x^27 -414*x^26 +1491*x^25 +338*x^24 -6524*x^23 +1928*x^22 +7881*x^21 -4257*x^20 +7086*x^19 -2814*x^18 -28437*x^17 +30193*x^16 +18744*x^15 -47298*x^14 +17738*x^13 +13339*x^12 -14197*x^11 +18725*x^10 -17810*x^9 -13496*x^8 +35794*x^7 -19124*x^6 -6133*x^5 +12494*x^4 -6834*x^3 +1932*x^2 -288*x +18) / ((x-1) *(3*x-1) *(2*x-1) *(x+1) *(2*x^2-1) *(x^2+2*x-1) *(x^2+x-1) *(x^2-3*x+1) *(x^3+x^2+x-1) *(x^3-x^2-2*x+1) *(x^3-2*x^2-x+1) *(x^3+2*x-1) *(x^3-x^2+2*x-1) *(x^3+x^2-1) *(2*x^2+2*x-1) *(x^3+x-1) *(x^3+2*x^2+x-1) *(x^3-2*x^2+3*x-1)). - Alois P. Heinz, Jun 13 2014
Comments