cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A243870 Number of Dyck paths of semilength n avoiding the consecutive steps UDUUUDDDUD (with U=(1,1), D=(1,-1)).

Original entry on oeis.org

1, 1, 2, 5, 14, 41, 129, 419, 1395, 4737, 16338, 57086, 201642, 718855, 2583149, 9346594, 34023934, 124519805, 457889432, 1690971387, 6268769864, 23320702586, 87031840257, 325741788736, 1222429311437, 4598725914380, 17339388194985, 65514945338284
Offset: 0

Views

Author

Alois P. Heinz, Jun 13 2014

Keywords

Comments

UDUUUDDDUD is the only Dyck path of semilength 5 that contains all eight consecutive step patterns of length 3.

Crossrefs

Column k=0 of A243881.
Column k=738 of A243753.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<14, [1, 1, 2, 5, 14, 41,
           129, 419, 1395, 4737, 16338, 57086, 201642, 718855][n+1],
           ((4*n-2)*a(n-1) -(3*n-9)*a(n-4) +(10*n-41)*a(n-5)
           -(3*n-21)*a(n-8) +(8*n-64)*a(n-9) -(n-14)*a(n-10)
           -(n-11)*a(n-12) +(2*n-25)*a(n-13) +(14-n)*a(n-14))/(n+1))
        end:
    seq(a(n), n=0..40);
  • Mathematica
    a[n_] := a[n] = If[n<14, {1, 1, 2, 5, 14, 41, 129, 419, 1395, 4737, 16338, 57086, 201642, 718855}[[n+1]], ((4n-2)a[n-1] - (3n-9)a[n-4] + (10n-41)a[n-5] - (3n-21)a[n-8] + (8n-64)a[n-9] - (n-14)a[n-10] - (n-11)a[n-12] + (2n-25)a[n-13] + (14-n)a[n-14])/(n+1)];
    a /@ Range[0, 40] (* Jean-François Alcover, Mar 27 2021, after Alois P. Heinz *)

Formula

Recursion: see Maple program.

A243871 Number of Dyck paths of semilength n having exactly 1 occurrence of the consecutive steps UDUUUDDDUD (with U=(1,1), D=(1,-1)).

Original entry on oeis.org

1, 3, 10, 35, 124, 454, 1684, 6305, 23781, 90209, 343809, 1315499, 5050144, 19442366, 75034354, 290203076, 1124511549, 4364693311, 16966567970, 66041815437, 257378634365, 1004167036295, 3921726323436, 15330264382726, 59977821022143, 234839855088313
Offset: 5

Views

Author

Alois P. Heinz, Jun 13 2014

Keywords

Crossrefs

Column k=1 of A243881.
Column k=738 of A243827.

Programs

  • Maple
    b:= proc(x, y, t) option remember; `if`(y<0 or y>x, 0, `if`(x=0, 1,
         series(b(x-1, y+1, [2, 2, 4, 5, 6, 2, 4, 2, 10, 2][t])+`if`(t=10,
          z, 1)*b(x-1, y-1, [1, 3, 1, 3, 3, 7, 8, 9, 1, 3][t]), z, 2)))
        end:
    a:= n-> coeff(b(2*n, 0, 1), z, 1):
    seq(a(n), n=5..40);

Formula

a(n) = (2*(2*n-17) *(2*n-19) *(2*n-9) *a(n-1) -(2*n-19) *(6*n^2-75*n+208) *a(n-4) +2*(2*n-17) *(10*n^2-136*n+387) *a(n-5) -(2*n-19) *(6*n^2-75*n+212) *a(n-8) +(32*n^3-704*n^2+4940*n-10850) *a(n-9) -(2*n-17) *(2*n-9) *(n-14) *a(n-10) -(2*n-19) *(n-8) *(2*n-9) *a(n-12) +2*(2*n-9) *(2*n^2-36*n+161) *a(n-13) -(n-10) *(2*n-17) *(2*n-9) *a(n-14)) / ((2*n-17) *(2*n-19) *(n-4)).

A243872 Number of Dyck paths of semilength n having exactly 2 (possibly overlapping) occurrences of the consecutive steps UDUUUDDDUD (with U=(1,1), D=(1,-1)).

Original entry on oeis.org

1, 4, 16, 65, 263, 1077, 4419, 18132, 74368, 304778, 1247972, 5105477, 20867862, 85219608, 347724794, 1417697157, 5775652743, 23512922998, 95657223246, 388912046916, 1580241458120, 6417249216667, 26046042351889, 105661066012240, 428430870576913
Offset: 9

Views

Author

Alois P. Heinz, Jun 13 2014

Keywords

Crossrefs

Column k=2 of A243881.
Column k=738 of A243828.

Programs

  • Maple
    b:= proc(x, y, t) option remember; `if`(y<0 or y>x, 0, `if`(x=0, 1,
         series(b(x-1, y+1, [2, 2, 4, 5, 6, 2, 4, 2, 10, 2][t])+`if`(t=10,
          z, 1)*b(x-1, y-1, [1, 3, 1, 3, 3, 7, 8, 9, 1, 3][t]), z, 3)))
        end:
    a:= n-> coeff(b(2*n, 0, 1), z, 2):
    seq(a(n), n=9..40);
  • Mathematica
    b[x_, y_, t_] := b[x, y, t] = If[y<0 || y>x, 0, If[x==0, 1, Series[
          b[x-1, y+1, {2, 2, 4, 5, 6, 2, 4, 2, 10, 2}[[t]]]+If[t==10, z, 1]*
          b[x-1, y-1, {1, 3, 1, 3, 3, 7, 8, 9, 1, 3}[[t]]], {z, 0, 3}]]];
    a[n_] := Coefficient[b[2n, 0, 1], z, 2];
    a /@ Range[9, 40] (* Jean-François Alcover, Dec 27 2020, after Alois P. Heinz *)

Formula

a(n) ~ c * d^n * sqrt(n), where d = 3.992152919721564592666177480042427843835641823811... is the root of equation 1 - 2*d + d^2 - 6*d^5 + 2*d^6 - 4*d^9 + d^10 = 0, and c = 0.00000109315704269290466088403991068... . - Vaclav Kotesovec, Jul 16 2014

A243873 Number of Dyck paths of semilength n having exactly 3 (possibly overlapping) occurrences of the consecutive steps UDUUUDDDUD (with U=(1,1), D=(1,-1)).

Original entry on oeis.org

1, 5, 23, 105, 472, 2118, 9446, 41847, 184256, 806740, 3514298, 15238732, 65803650, 283077978, 1213561196, 5186141801, 22098720181, 93913940321, 398127653185, 1683928072645, 7107304159469, 29938529102885, 125880340885997, 528371537192555, 2214227613719264
Offset: 13

Views

Author

Alois P. Heinz, Jun 13 2014

Keywords

Crossrefs

Column k=3 of A243881.

Programs

  • Maple
    b:= proc(x, y, t) option remember; `if`(y<0 or y>x, 0, `if`(x=0, 1,
         series(b(x-1, y+1, [2, 2, 4, 5, 6, 2, 4, 2, 10, 2][t])+`if`(t=10,
          z, 1)*b(x-1, y-1, [1, 3, 1, 3, 3, 7, 8, 9, 1, 3][t]), z, 4)))
        end:
    a:= n-> coeff(b(2*n, 0, 1), z, 3):
    seq(a(n), n=13..45);

A243874 Number of Dyck paths of semilength n having exactly 4 (possibly overlapping) occurrences of the consecutive steps UDUUUDDDUD (with U=(1,1), D=(1,-1)).

Original entry on oeis.org

1, 6, 31, 156, 766, 3717, 17812, 84342, 395152, 1833853, 8438976, 38540936, 174819086, 788082431, 3532770025, 15755543925, 69937932805, 309113716505, 1360804143915, 5968626187120, 26089764842864, 113680654898844, 493874661384094, 2139660006480909
Offset: 17

Views

Author

Alois P. Heinz, Jun 13 2014

Keywords

Crossrefs

Column k=4 of A243881.

Programs

  • Maple
    b:= proc(x, y, t) option remember; `if`(y<0 or y>x, 0, `if`(x=0, 1,
         series(b(x-1, y+1, [2, 2, 4, 5, 6, 2, 4, 2, 10, 2][t])+`if`(t=10,
          z, 1)*b(x-1, y-1, [1, 3, 1, 3, 3, 7, 8, 9, 1, 3][t]), z, 5)))
        end:
    a:= n-> coeff(b(2*n, 0, 1), z, 4):
    seq(a(n), n=17..45);

A243875 Number of Dyck paths of semilength n having exactly 5 (possibly overlapping) occurrences of the consecutive steps UDUUUDDDUD (with U=(1,1), D=(1,-1)).

Original entry on oeis.org

1, 7, 40, 219, 1161, 6035, 30816, 154815, 766711, 3749225, 18128129, 86772929, 411599785, 1936434085, 9042584447, 41939926492, 193310490160, 885917766448, 4038628790596, 18320941855600, 82734637234636, 372039593944604, 1666387342165538, 7436328773819975
Offset: 21

Views

Author

Alois P. Heinz, Jun 13 2014

Keywords

Crossrefs

Column k=5 of A243881.

Programs

  • Maple
    b:= proc(x, y, t) option remember; `if`(y<0 or y>x, 0, `if`(x=0, 1,
         series(b(x-1, y+1, [2, 2, 4, 5, 6, 2, 4, 2, 10, 2][t])+`if`(t=10,
          z, 1)*b(x-1, y-1, [1, 3, 1, 3, 3, 7, 8, 9, 1, 3][t]), z, 6)))
        end:
    a:= n-> coeff(b(2*n, 0, 1), z, 5):
    seq(a(n), n=21..50);

A243876 Number of Dyck paths of semilength n having exactly 6 (possibly overlapping) occurrences of the consecutive steps UDUUUDDDUD (with U=(1,1), D=(1,-1)).

Original entry on oeis.org

1, 8, 50, 295, 1674, 9255, 50037, 265190, 1381151, 7083239, 35832547, 179064335, 885033494, 4330974280, 21002926804, 101014451257, 482163988802, 2285470580378, 10763603536650, 50390267987583, 234599001141494, 1086577533281204, 5008393400154248
Offset: 25

Views

Author

Alois P. Heinz, Jun 13 2014

Keywords

Crossrefs

Column k=6 of A243881.

Programs

  • Maple
    b:= proc(x, y, t) option remember; `if`(y<0 or y>x, 0, `if`(x=0, 1,
         series(b(x-1, y+1, [2, 2, 4, 5, 6, 2, 4, 2, 10, 2][t])+`if`(t=10,
          z, 1)*b(x-1, y-1, [1, 3, 1, 3, 3, 7, 8, 9, 1, 3][t]), z, 7)))
        end:
    a:= n-> coeff(b(2*n, 0, 1), z, 6):
    seq(a(n), n=25..55);

A243877 Number of Dyck paths of semilength n having exactly 7 (possibly overlapping) occurrences of the consecutive steps UDUUUDDDUD (with U=(1,1), D=(1,-1)).

Original entry on oeis.org

1, 9, 61, 385, 2323, 13583, 77363, 430573, 2348528, 12584052, 66372328, 345160962, 1772302098, 8996192858, 45189272314, 224832198163, 1108842335240, 5424622033040, 26340438937256, 127018289627132, 608569050945950, 2898295732654434, 13725710735084610
Offset: 29

Views

Author

Alois P. Heinz, Jun 13 2014

Keywords

Crossrefs

Column k=7 of A243881.

Programs

  • Maple
    b:= proc(x, y, t) option remember; `if`(y<0 or y>x, 0, `if`(x=0, 1,
         series(b(x-1, y+1, [2, 2, 4, 5, 6, 2, 4, 2, 10, 2][t])+`if`(t=10,
          z, 1)*b(x-1, y-1, [1, 3, 1, 3, 3, 7, 8, 9, 1, 3][t]), z, 8)))
        end:
    a:= n-> coeff(b(2*n, 0, 1), z, 7):
    seq(a(n), n=29..60);

A243878 Number of Dyck paths of semilength n having exactly 8 (possibly overlapping) occurrences of the consecutive steps UDUUUDDDUD (with U=(1,1), D=(1,-1)).

Original entry on oeis.org

1, 10, 73, 490, 3127, 19249, 115021, 669745, 3812716, 21277658, 116666435, 629665898, 3350420024, 17599292330, 91368992279, 469293511892, 2386777084592, 12029136326922, 60118399193577, 298121360285805, 1467661404628893, 7176555449003580, 34870090954789419
Offset: 33

Views

Author

Alois P. Heinz, Jun 13 2014

Keywords

Crossrefs

Column k=8 of A243881.

Programs

  • Maple
    b:= proc(x, y, t) option remember; `if`(y<0 or y>x, 0, `if`(x=0, 1,
         series(b(x-1, y+1, [2, 2, 4, 5, 6, 2, 4, 2, 10, 2][t])+`if`(t=10,
          z, 1)*b(x-1, y-1, [1, 3, 1, 3, 3, 7, 8, 9, 1, 3][t]), z, 9)))
        end:
    a:= n-> coeff(b(2*n, 0, 1), z, 8):
    seq(a(n), n=33..60);

A243879 Number of Dyck paths of semilength n having exactly 9 (possibly overlapping) occurrences of the consecutive steps UDUUUDDDUD (with U=(1,1), D=(1,-1)).

Original entry on oeis.org

1, 11, 86, 611, 4106, 26508, 165608, 1005693, 5958138, 34538560, 196383607, 1097479232, 6038391492, 32757730552, 175436127352, 928559489820, 4861821384020, 25202877769350, 129444778524955, 659155791410730, 3329785315219783, 16695460286688023, 83126852562101708
Offset: 37

Views

Author

Alois P. Heinz, Jun 13 2014

Keywords

Crossrefs

Column k=9 of A243881.

Programs

  • Maple
    b:= proc(x, y, t) option remember; `if`(y<0 or y>x, 0, `if`(x=0, 1,
         series(b(x-1, y+1, [2, 2, 4, 5, 6, 2, 4, 2, 10, 2][t])+`if`(t=10,
          z, 1)*b(x-1, y-1, [1, 3, 1, 3, 3, 7, 8, 9, 1, 3][t]), z, 10)))
        end:
    a:= n-> coeff(b(2*n, 0, 1), z, 9):
    seq(a(n), n=37..65);
Showing 1-10 of 11 results. Next