A243870
Number of Dyck paths of semilength n avoiding the consecutive steps UDUUUDDDUD (with U=(1,1), D=(1,-1)).
Original entry on oeis.org
1, 1, 2, 5, 14, 41, 129, 419, 1395, 4737, 16338, 57086, 201642, 718855, 2583149, 9346594, 34023934, 124519805, 457889432, 1690971387, 6268769864, 23320702586, 87031840257, 325741788736, 1222429311437, 4598725914380, 17339388194985, 65514945338284
Offset: 0
-
a:= proc(n) option remember; `if`(n<14, [1, 1, 2, 5, 14, 41,
129, 419, 1395, 4737, 16338, 57086, 201642, 718855][n+1],
((4*n-2)*a(n-1) -(3*n-9)*a(n-4) +(10*n-41)*a(n-5)
-(3*n-21)*a(n-8) +(8*n-64)*a(n-9) -(n-14)*a(n-10)
-(n-11)*a(n-12) +(2*n-25)*a(n-13) +(14-n)*a(n-14))/(n+1))
end:
seq(a(n), n=0..40);
-
a[n_] := a[n] = If[n<14, {1, 1, 2, 5, 14, 41, 129, 419, 1395, 4737, 16338, 57086, 201642, 718855}[[n+1]], ((4n-2)a[n-1] - (3n-9)a[n-4] + (10n-41)a[n-5] - (3n-21)a[n-8] + (8n-64)a[n-9] - (n-14)a[n-10] - (n-11)a[n-12] + (2n-25)a[n-13] + (14-n)a[n-14])/(n+1)];
a /@ Range[0, 40] (* Jean-François Alcover, Mar 27 2021, after Alois P. Heinz *)
A243871
Number of Dyck paths of semilength n having exactly 1 occurrence of the consecutive steps UDUUUDDDUD (with U=(1,1), D=(1,-1)).
Original entry on oeis.org
1, 3, 10, 35, 124, 454, 1684, 6305, 23781, 90209, 343809, 1315499, 5050144, 19442366, 75034354, 290203076, 1124511549, 4364693311, 16966567970, 66041815437, 257378634365, 1004167036295, 3921726323436, 15330264382726, 59977821022143, 234839855088313
Offset: 5
-
b:= proc(x, y, t) option remember; `if`(y<0 or y>x, 0, `if`(x=0, 1,
series(b(x-1, y+1, [2, 2, 4, 5, 6, 2, 4, 2, 10, 2][t])+`if`(t=10,
z, 1)*b(x-1, y-1, [1, 3, 1, 3, 3, 7, 8, 9, 1, 3][t]), z, 2)))
end:
a:= n-> coeff(b(2*n, 0, 1), z, 1):
seq(a(n), n=5..40);
A243872
Number of Dyck paths of semilength n having exactly 2 (possibly overlapping) occurrences of the consecutive steps UDUUUDDDUD (with U=(1,1), D=(1,-1)).
Original entry on oeis.org
1, 4, 16, 65, 263, 1077, 4419, 18132, 74368, 304778, 1247972, 5105477, 20867862, 85219608, 347724794, 1417697157, 5775652743, 23512922998, 95657223246, 388912046916, 1580241458120, 6417249216667, 26046042351889, 105661066012240, 428430870576913
Offset: 9
-
b:= proc(x, y, t) option remember; `if`(y<0 or y>x, 0, `if`(x=0, 1,
series(b(x-1, y+1, [2, 2, 4, 5, 6, 2, 4, 2, 10, 2][t])+`if`(t=10,
z, 1)*b(x-1, y-1, [1, 3, 1, 3, 3, 7, 8, 9, 1, 3][t]), z, 3)))
end:
a:= n-> coeff(b(2*n, 0, 1), z, 2):
seq(a(n), n=9..40);
-
b[x_, y_, t_] := b[x, y, t] = If[y<0 || y>x, 0, If[x==0, 1, Series[
b[x-1, y+1, {2, 2, 4, 5, 6, 2, 4, 2, 10, 2}[[t]]]+If[t==10, z, 1]*
b[x-1, y-1, {1, 3, 1, 3, 3, 7, 8, 9, 1, 3}[[t]]], {z, 0, 3}]]];
a[n_] := Coefficient[b[2n, 0, 1], z, 2];
a /@ Range[9, 40] (* Jean-François Alcover, Dec 27 2020, after Alois P. Heinz *)
A243873
Number of Dyck paths of semilength n having exactly 3 (possibly overlapping) occurrences of the consecutive steps UDUUUDDDUD (with U=(1,1), D=(1,-1)).
Original entry on oeis.org
1, 5, 23, 105, 472, 2118, 9446, 41847, 184256, 806740, 3514298, 15238732, 65803650, 283077978, 1213561196, 5186141801, 22098720181, 93913940321, 398127653185, 1683928072645, 7107304159469, 29938529102885, 125880340885997, 528371537192555, 2214227613719264
Offset: 13
-
b:= proc(x, y, t) option remember; `if`(y<0 or y>x, 0, `if`(x=0, 1,
series(b(x-1, y+1, [2, 2, 4, 5, 6, 2, 4, 2, 10, 2][t])+`if`(t=10,
z, 1)*b(x-1, y-1, [1, 3, 1, 3, 3, 7, 8, 9, 1, 3][t]), z, 4)))
end:
a:= n-> coeff(b(2*n, 0, 1), z, 3):
seq(a(n), n=13..45);
A243874
Number of Dyck paths of semilength n having exactly 4 (possibly overlapping) occurrences of the consecutive steps UDUUUDDDUD (with U=(1,1), D=(1,-1)).
Original entry on oeis.org
1, 6, 31, 156, 766, 3717, 17812, 84342, 395152, 1833853, 8438976, 38540936, 174819086, 788082431, 3532770025, 15755543925, 69937932805, 309113716505, 1360804143915, 5968626187120, 26089764842864, 113680654898844, 493874661384094, 2139660006480909
Offset: 17
-
b:= proc(x, y, t) option remember; `if`(y<0 or y>x, 0, `if`(x=0, 1,
series(b(x-1, y+1, [2, 2, 4, 5, 6, 2, 4, 2, 10, 2][t])+`if`(t=10,
z, 1)*b(x-1, y-1, [1, 3, 1, 3, 3, 7, 8, 9, 1, 3][t]), z, 5)))
end:
a:= n-> coeff(b(2*n, 0, 1), z, 4):
seq(a(n), n=17..45);
A243875
Number of Dyck paths of semilength n having exactly 5 (possibly overlapping) occurrences of the consecutive steps UDUUUDDDUD (with U=(1,1), D=(1,-1)).
Original entry on oeis.org
1, 7, 40, 219, 1161, 6035, 30816, 154815, 766711, 3749225, 18128129, 86772929, 411599785, 1936434085, 9042584447, 41939926492, 193310490160, 885917766448, 4038628790596, 18320941855600, 82734637234636, 372039593944604, 1666387342165538, 7436328773819975
Offset: 21
-
b:= proc(x, y, t) option remember; `if`(y<0 or y>x, 0, `if`(x=0, 1,
series(b(x-1, y+1, [2, 2, 4, 5, 6, 2, 4, 2, 10, 2][t])+`if`(t=10,
z, 1)*b(x-1, y-1, [1, 3, 1, 3, 3, 7, 8, 9, 1, 3][t]), z, 6)))
end:
a:= n-> coeff(b(2*n, 0, 1), z, 5):
seq(a(n), n=21..50);
A243876
Number of Dyck paths of semilength n having exactly 6 (possibly overlapping) occurrences of the consecutive steps UDUUUDDDUD (with U=(1,1), D=(1,-1)).
Original entry on oeis.org
1, 8, 50, 295, 1674, 9255, 50037, 265190, 1381151, 7083239, 35832547, 179064335, 885033494, 4330974280, 21002926804, 101014451257, 482163988802, 2285470580378, 10763603536650, 50390267987583, 234599001141494, 1086577533281204, 5008393400154248
Offset: 25
-
b:= proc(x, y, t) option remember; `if`(y<0 or y>x, 0, `if`(x=0, 1,
series(b(x-1, y+1, [2, 2, 4, 5, 6, 2, 4, 2, 10, 2][t])+`if`(t=10,
z, 1)*b(x-1, y-1, [1, 3, 1, 3, 3, 7, 8, 9, 1, 3][t]), z, 7)))
end:
a:= n-> coeff(b(2*n, 0, 1), z, 6):
seq(a(n), n=25..55);
A243877
Number of Dyck paths of semilength n having exactly 7 (possibly overlapping) occurrences of the consecutive steps UDUUUDDDUD (with U=(1,1), D=(1,-1)).
Original entry on oeis.org
1, 9, 61, 385, 2323, 13583, 77363, 430573, 2348528, 12584052, 66372328, 345160962, 1772302098, 8996192858, 45189272314, 224832198163, 1108842335240, 5424622033040, 26340438937256, 127018289627132, 608569050945950, 2898295732654434, 13725710735084610
Offset: 29
-
b:= proc(x, y, t) option remember; `if`(y<0 or y>x, 0, `if`(x=0, 1,
series(b(x-1, y+1, [2, 2, 4, 5, 6, 2, 4, 2, 10, 2][t])+`if`(t=10,
z, 1)*b(x-1, y-1, [1, 3, 1, 3, 3, 7, 8, 9, 1, 3][t]), z, 8)))
end:
a:= n-> coeff(b(2*n, 0, 1), z, 7):
seq(a(n), n=29..60);
A243878
Number of Dyck paths of semilength n having exactly 8 (possibly overlapping) occurrences of the consecutive steps UDUUUDDDUD (with U=(1,1), D=(1,-1)).
Original entry on oeis.org
1, 10, 73, 490, 3127, 19249, 115021, 669745, 3812716, 21277658, 116666435, 629665898, 3350420024, 17599292330, 91368992279, 469293511892, 2386777084592, 12029136326922, 60118399193577, 298121360285805, 1467661404628893, 7176555449003580, 34870090954789419
Offset: 33
-
b:= proc(x, y, t) option remember; `if`(y<0 or y>x, 0, `if`(x=0, 1,
series(b(x-1, y+1, [2, 2, 4, 5, 6, 2, 4, 2, 10, 2][t])+`if`(t=10,
z, 1)*b(x-1, y-1, [1, 3, 1, 3, 3, 7, 8, 9, 1, 3][t]), z, 9)))
end:
a:= n-> coeff(b(2*n, 0, 1), z, 8):
seq(a(n), n=33..60);
A243879
Number of Dyck paths of semilength n having exactly 9 (possibly overlapping) occurrences of the consecutive steps UDUUUDDDUD (with U=(1,1), D=(1,-1)).
Original entry on oeis.org
1, 11, 86, 611, 4106, 26508, 165608, 1005693, 5958138, 34538560, 196383607, 1097479232, 6038391492, 32757730552, 175436127352, 928559489820, 4861821384020, 25202877769350, 129444778524955, 659155791410730, 3329785315219783, 16695460286688023, 83126852562101708
Offset: 37
-
b:= proc(x, y, t) option remember; `if`(y<0 or y>x, 0, `if`(x=0, 1,
series(b(x-1, y+1, [2, 2, 4, 5, 6, 2, 4, 2, 10, 2][t])+`if`(t=10,
z, 1)*b(x-1, y-1, [1, 3, 1, 3, 3, 7, 8, 9, 1, 3][t]), z, 10)))
end:
a:= n-> coeff(b(2*n, 0, 1), z, 9):
seq(a(n), n=37..65);
Showing 1-10 of 11 results.
Comments