cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A243882 Number of Dyck paths of semilength n such that all eight consecutive step patterns of length 3 occur at least once.

Original entry on oeis.org

1, 21, 124, 636, 2749, 11265, 44028, 168673, 636526, 2385703, 8903294, 33177968, 123602040, 460821006, 1720240295, 6432225711, 24095079682, 90435264009, 340097165156, 1281506663877, 4838093967400, 18299480354681, 69340086808691, 263195643048634
Offset: 5

Views

Author

Alois P. Heinz, Jun 13 2014

Keywords

Examples

			a(5) = 1: 1011100010.
a(6) = 21: 101011100010, 101110001010, 101110100010, 101111000010, 101111000100, 101111001000, 110010111000, 110011101000, 110100111000, 110111000010, 110111000100, 110111001000, 111000101100, 111000110100, 111001011000, 111001101000, 111010001100, 111010011000, 111011000010, 111011000100, 111011001000.
Here 1=Up=(1,1), 0=Down=(1,-1).
		

Crossrefs

Programs

  • Maple
    b:= proc(x, y, t, s) option remember; `if`(y<0 or y>x, 0,
          `if`(x=0, `if`(s={}, 1, 0), `if`(nops(s)>x, 0, add(
          b(x-1, y-1+2*j, irem(2*t+j, 4), s minus {2*t+j}), j=0..1))))
        end:
    a:= n-> add(b(2*n-2, l[], {$0..7}), l=[[0, 2], [2, 3]]):
    seq(a(n), n=5..35);
  • Mathematica
    b[x_, y_, t_, s_List] := b[x, y, t, s] = If[y<0 || y>x, 0, If[x == 0, If[s == {}, 1, 0], If[Length[s]>x, 0, Sum[b[x-1, y-1 + 2*j, Mod[2*t+j, 4], s ~Complement~ {2*t + j}], {j, 0, 1}]]]]; a[n_] :=  Sum[b[2*n-2, Sequence @@ l, Range[0, 7]], {l, {{0, 2}, {2, 3}}}]; Table[a[n], {n, 5, 35}] (* Jean-François Alcover, Feb 05 2015, after Alois P. Heinz *)

Formula

a(n) ~ 4^n / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Jun 15 2014