A243881 Number T(n,k) of Dyck paths of semilength n having exactly k (possibly overlapping) occurrences of the consecutive steps UDUUUDDDUD (with U=(1,1), D=(1,-1)); triangle T(n,k), n>=0, 0<=k<=max(0,floor((n-1)/4)), read by rows.
1, 1, 2, 5, 14, 41, 1, 129, 3, 419, 10, 1395, 35, 4737, 124, 1, 16338, 454, 4, 57086, 1684, 16, 201642, 6305, 65, 718855, 23781, 263, 1, 2583149, 90209, 1077, 5, 9346594, 343809, 4419, 23, 34023934, 1315499, 18132, 105, 124519805, 5050144, 74368, 472, 1
Offset: 0
Examples
Triangle T(n,k) begins: : 0 : 1; : 1 : 1; : 2 : 2; : 3 : 5; : 4 : 14; : 5 : 41, 1; : 6 : 129, 3; : 7 : 419, 10; : 8 : 1395, 35; : 9 : 4737, 124, 1; : 10 : 16338, 454, 4; : 11 : 57086, 1684, 16; : 12 : 201642, 6305, 65; : 13 : 718855, 23781, 263, 1; : 14 : 2583149, 90209, 1077, 5; : 15 : 9346594, 343809, 4419, 23; : 16 : 34023934, 1315499, 18132, 105;
Links
- Alois P. Heinz, Rows n = 0..300, flattened
Crossrefs
Programs
-
Maple
b:= proc(x, y, t) option remember; `if`(y<0 or y>x, 0, `if`(x=0, 1, expand(b(x-1, y+1, [2, 2, 4, 5, 6, 2, 4, 2, 10, 2][t])+`if`(t=10, z, 1)*b(x-1, y-1, [1, 3, 1, 3, 3, 7, 8, 9, 1, 3][t])))) end: T:= n-> (p-> seq(coeff(p, z, i), i=0..degree(p)))(b(2*n, 0, 1)): seq(T(n), n=0..20);
-
Mathematica
b[x_, y_, t_] := b[x, y, t] = If[y<0 || y>x, 0, If[x==0, 1, Expand[b[x-1, y+1, {2, 2, 4, 5, 6, 2, 4, 2, 10, 2}[[t]]] + If[t==10, z, 1]*b[x-1, y-1, {1, 3, 1, 3, 3, 7, 8, 9, 1, 3}[[t]]]]]]; T[n_] := Function[{p}, Table[Coefficient[p, z, i], {i, 0, Exponent[p, z]}]][b[2*n, 0, 1]]; Table[T[n], {n, 0, 20}] // Flatten (* Jean-François Alcover, Mar 31 2015, after Alois P. Heinz *)
Comments