A243966 Number of Dyck paths of semilength n such that all five consecutive patterns of Dyck paths of semilength 3 occur at least once.
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 138, 1152, 8166, 52098, 308964, 1733444, 9311300, 48280464, 243112106, 1194286106, 5744306228, 27129749648, 126111332862, 578106334718, 2617667137358, 11723920607410, 51998857149406, 228621028644376, 997286152915772
Offset: 0
Keywords
Examples
a(12) = 12: 101010110010110100111000, 101010110010111000110100, 101100101010110100111000, 101100101010111000110100, 110100101010110010111000, 110100101100101010111000, 110100111000101010110010, 110100111000101100101010, 111000101010110010110100, 111000101100101010110100, 111000110100101010110010, 111000110100101100101010. Here 1=Up=(1,1), 0=Down=(1,-1).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..300
Programs
-
Maple
b:= proc(x, y, l) option remember; local m; m:= min(l[]); `if`(y>x or y<0 or 7-m>x, 0, `if`(x=0, 1, b(x-1, y+1, [[2, 3, 4, 4, 2, 2, 7][l[1]], [2, 3, 3, 5, 3, 2, 7][l[2]], [2, 3, 3, 2, 6, 3,7][l[3]], [2, 2, 4, 5, 2, 4, 7][l[4]], [2, 2, 4, 2, 6, 2,7][l[5]]])+ b(x-1, y-1, [[1, 1, 1, 5, 6, 7, 7][l[1]], [1, 1, 4, 1, 6, 7, 7][l[2]], [1, 1, 4, 5, 1, 7, 7][l[3]], [1, 3, 1, 3, 6, 7, 7][l[4]], [1, 3, 1, 5, 1, 7, 7][l[5]]]))) end: a:= n-> b(2*n, 0, [1$5]): seq(a(n), n=0..35);
-
Mathematica
b[x_, y_, l_] := b[x, y, l] = Module[{m = Min[l]}, If[y>x || y<0 || 7-m>x, 0, If[x == 0, 1, b[x-1, y+1, MapIndexed[#1[[l[[#2[[1]] ]] ]]&, {{2, 3, 4, 4, 2, 2, 7}, {2, 3, 3, 5, 3, 2, 7}, {2, 3, 3, 2, 6, 3, 7}, {2, 2, 4, 5, 2, 4, 7}, {2, 2, 4, 2, 6, 2, 7}}]]] + b[x-1, y-1, MapIndexed[#1[[l[[#2[[1]] ]] ]]&, {{1, 1, 1, 5, 6, 7, 7}, {1, 1, 4, 1, 6, 7, 7}, {1, 1, 4, 5, 1, 7, 7}, {1, 3, 1, 3, 6, 7, 7}, {1, 3, 1, 5, 1, 7, 7}}]]]]; a[n_] := b[2n, 0, {1, 1, 1, 1, 1}]; a /@ Range[0, 35] (* Jean-François Alcover, Jan 26 2021, after Alois P. Heinz *)
Comments