A243820
Number of Dyck paths of semilength n such that all sixteen consecutive step patterns of length 4 occur at least once.
Original entry on oeis.org
38, 587, 4785, 31398, 190050, 1043248, 5324534, 25711105, 119092876, 533680433, 2329450085, 9955122396, 41824314441, 173289259905, 709861015186, 2880803895035, 11601285215222, 46422795985447, 184784743066842, 732324944072523, 2891815190097065, 11385122145001833
Offset: 10
a(10) = 38: 10101100111101000010, 10101101001111000010, 10101111000011010010, 10101111001101000010, 10101111010000110010, 10101111010011000010, 10110011110100001010, 10110011110101000010, 10110100111100001010, 10110101001111000010, 10111100001101001010, 10111100001101010010, 10111100110100001010, 10111100110101000010, 10111101000011001010, 10111101001100001010, 10111101010000110010, 10111101010011000010, 11001011110000110100, 11001011110100001100, 11001101011110000100, 11001101111000010100, 11001111000010110100, 11001111010000101100, 11001111010110000100, 11001111011000010100, 11010010111100001100, 11010011110000101100, 11010110011110000100, 11010111100001001100, 11010111100001100100, 11010111100100001100, 11010111100110000100, 11011001111000010100, 11011110000101001100, 11011110000110010100, 11011110010100001100, 11011110011000010100. Here 1=Up=(1,1), 0=Down=(1,-1).
-
b:= proc(x, y, t, s) option remember; `if`(y<0 or y>x, 0,
`if`(x=0, `if`(s={}, 1, 0), `if`(nops(s)>x, 0, add(
b(x-1, y-1+2*j, irem(2*t+j, 8), s minus {2*t+j}), j=0..1))))
end:
a:= n-> add(b(2*n-3, l[], {$0..15}), l=[[1, 5], [1, 6], [3, 7]]):
seq(a(n), n=10..20);
-
b[x_, y_, t_, s_List] := b[x, y, t, s] = If[y < 0 || y > x, 0, If[x == 0, If[s == {}, 1, 0], If[Length[s] > x, 0, Sum[b[x - 1, y - 1 + 2 j, Mod[2 t + j, 8], s ~Complement~ {2 t + j}], {j, 0, 1}]]]];
a[n_] := Sum[b[2 n - 3, Sequence @@ l, Range[0, 15]], {l, {{1, 5}, {1, 6}, {3, 7}}}];
a /@ Range[10, 31] (* Jean-François Alcover, Apr 28 2020, after Alois P. Heinz *)
A243965
Number of Dyck paths of semilength n such that both consecutive patterns of Dyck paths of semilength 2 occur at least once.
Original entry on oeis.org
0, 0, 0, 0, 2, 10, 44, 179, 702, 2701, 10278, 38866, 146450, 550817, 2070116, 7779655, 29248932, 110047905, 414446256, 1562538171, 5898049688, 22290789562, 84351810044, 319609669957, 1212552963576, 4606078246284, 17518748817596, 66712192842068, 254346235738120
Offset: 0
a(4) = 2: 10101100, 11001010.
a(5) = 10: 1010101100, 1010110010, 1010111000, 1011001010, 1100101010, 1100110100, 1101001100, 1101011000, 1110001010, 1110010100.
Here 1=Up=(1,1), 0=Down=(1,-1).
-
b:= proc(x, y, t, s) option remember; `if`(y<0 or y>x, 0,
`if`(x=0, `if`(s={}, 1, 0), `if`(nops(s)>x, 0, add(
b(x-1, y-1+2*j, irem(2*t+j, 8), s minus {2*t+j}), j=0..1))))
end:
a:= n-> b(2*n, 0, 0, {10, 12}):
seq(a(n), n=0..30);
-
b[x_, y_, t_, s_] := b[x, y, t, s] = If[y<0 || y>x, 0, If[x == 0, If[s == {}, 1, 0], If[Length[s] > x, 0, Sum[b[x - 1, y - 1 + 2 j, Mod[2t + j, 8], s ~Complement~ {2t + j}], {j, 0, 1}]]]];
a[n_] := b[2n, 0, 0, {10, 12}];
a /@ Range[0, 30] (* Jean-François Alcover, Dec 21 2020, after Alois P. Heinz *)
A243986
Number of Dyck paths of semilength n avoiding all five consecutive patterns of Dyck paths of semilength 3.
Original entry on oeis.org
1, 1, 2, 0, 1, 1, 4, 11, 29, 81, 220, 608, 1676, 4633, 12847, 35685, 99367, 277256, 775197, 2171691, 6095329, 17138861, 48274370, 136197884, 384868351, 1089211676, 3087038820, 8761410780, 24898994687, 70850054269, 201848300443, 575723018363, 1643931888516
Offset: 0
a(n) = A000108(n) for n<3.
a(3) = 0 because no Dyck path of semilength 3 can avoid itself.
a(4) = 1: 11001100.
a(5) = 1: 1110011000.
a(6) = 4: 101110011000, 110011001100, 111001100010, 111100110000.
a(7) = 11: 10101110011000, 10111001100010, 10111100110000, 11001110011000, 11011100110000, 11100110001010, 11100110001100, 11100110011000, 11110011000010, 11110011000100, 11111001100000.
-
a:= proc(n) option remember; `if`(n<18, [1$2, 2, 0, 1$2, 4, 11, 29,
81, 220, 608, 1676, 4633, 12847, 35685, 99367, 277256][n+1],
((4*n-80)*a(n-18) +(16*n-302)*a(n-17) +(17*n-295)*a(n-16)
-(15*n-273)*a(n-15) -(61*n-971)*a(n-14) -(73*n-1043)*a(n-13)
-(19*n-191)*a(n-12) +(64*n-857)*a(n-11) +(114*n-1281)*a(n-10)
+(90*n-855)*a(n-9) +(11*n-40)*a(n-8) -(53*n-433)*a(n-7)
-(74*n-478)*a(n-6) -(42*n-225)*a(n-5) -(7*n-50)*a(n-4)
+(10*n-17)*a(n-3) +(6*n-12)*a(n-2) +(n-2)*a(n-1))/(n+1))
end:
seq(a(n), n=0..40);
-
b[x_, y_, t_] := b[x, y, t] = If[y<0 || y>x, 0, If[x == 0, 1, Expand[ Sum[b[x - 1, y - 1 + 2j, Mod[2t + j, 32]]*If[MemberQ[{42, 44, 50, 52, 56}, 2t + j], z, 1], {j, 0, 1}]]]];
a[n_] := Coefficient[b[2n, 0, 0], z, 0];
a /@ Range[0, 40] (* Jean-François Alcover, Dec 21 2020, after Alois P. Heinz in A243998 *)
A243998
Number T(n,k) of Dyck paths of semilength n with exactly k (possibly overlapping) occurrences of some of the consecutive patterns of Dyck paths of semilength 3; triangle T(n,k), n>=0, 0<=k<=max(0,n-2), read by rows.
Original entry on oeis.org
1, 1, 2, 0, 5, 1, 11, 2, 1, 33, 7, 1, 4, 90, 30, 7, 1, 11, 245, 142, 24, 6, 1, 29, 680, 570, 121, 24, 5, 1, 81, 1884, 2176, 578, 112, 25, 5, 1, 220, 5265, 7935, 2649, 580, 116, 25, 5, 1, 608, 14747, 28022, 11827, 2825, 602, 124, 25, 5, 1
Offset: 0
T(3,1) = 5: 101010, 101100, 110010, 110100, 111000.
T(4,0) = 1: 11001100.
T(4,2) = 2: 10101010, 10110010.
T(5,0) = 1: 1110011000.
T(6,3) = 7: 101010101100, 101010110010, 101100101010, 101100101100, 110010101010, 110010110010, 110101010100.
Triangle T(n,k) begins:
: 0 : 1;
: 1 : 1;
: 2 : 2;
: 3 : 0, 5;
: 4 : 1, 11, 2;
: 5 : 1, 33, 7, 1;
: 6 : 4, 90, 30, 7, 1;
: 7 : 11, 245, 142, 24, 6, 1;
: 8 : 29, 680, 570, 121, 24, 5, 1;
: 9 : 81, 1884, 2176, 578, 112, 25, 5, 1;
: 10 : 220, 5265, 7935, 2649, 580, 116, 25, 5, 1;
-
b:= proc(x, y, t) option remember; `if`(y<0 or y>x, 0,
`if`(x=0, 1, expand(add(b(x-1, y-1+2*j, irem(2*t+j, 32))*
`if`(2*t+j in {42, 44, 50, 52, 56}, z, 1), j=0..1))))
end:
T:= n-> (p-> seq(coeff(p, z, i), i=0..degree(p)))(b(2*n, 0, 0)):
seq(T(n), n=0..14);
-
b[x_, y_, t_] := b[x, y, t] = If[y < 0 || y > x, 0,
If[x == 0, 1, Expand[Sum[b[x-1, y-1 + 2j, Mod[2t+j, 32]]*
Switch[2t+j, 42|44|50|52|56, z, _, 1], {j, 0, 1}]]]];
T[n_] := CoefficientList[b[2n, 0, 0], z];
Table[T[n], {n, 0, 14}] // Flatten (* Jean-François Alcover, Apr 30 2022, after Alois P. Heinz *)
Showing 1-4 of 4 results.
Comments