cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A243966 Number of Dyck paths of semilength n such that all five consecutive patterns of Dyck paths of semilength 3 occur at least once.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 138, 1152, 8166, 52098, 308964, 1733444, 9311300, 48280464, 243112106, 1194286106, 5744306228, 27129749648, 126111332862, 578106334718, 2617667137358, 11723920607410, 51998857149406, 228621028644376, 997286152915772
Offset: 0

Views

Author

Alois P. Heinz, Jun 16 2014

Keywords

Comments

The five consecutive patterns that occur at least once each are 101010, 101100, 110010, 110100, 111000. Here 1=Up=(1,1), 0=Down=(1,-1).

Examples

			a(12) = 12: 101010110010110100111000, 101010110010111000110100, 101100101010110100111000, 101100101010111000110100, 110100101010110010111000, 110100101100101010111000, 110100111000101010110010, 110100111000101100101010, 111000101010110010110100, 111000101100101010110100, 111000110100101010110010, 111000110100101100101010.
Here 1=Up=(1,1), 0=Down=(1,-1).
		

Crossrefs

Programs

  • Maple
    b:= proc(x, y, l) option remember; local m; m:= min(l[]);
          `if`(y>x or y<0 or 7-m>x, 0, `if`(x=0, 1,
          b(x-1, y+1, [[2, 3, 4, 4, 2, 2, 7][l[1]],
           [2, 3, 3, 5, 3, 2, 7][l[2]], [2, 3, 3, 2, 6, 3,7][l[3]],
           [2, 2, 4, 5, 2, 4, 7][l[4]], [2, 2, 4, 2, 6, 2,7][l[5]]])+
          b(x-1, y-1, [[1, 1, 1, 5, 6, 7, 7][l[1]],
           [1, 1, 4, 1, 6, 7, 7][l[2]], [1, 1, 4, 5, 1, 7, 7][l[3]],
           [1, 3, 1, 3, 6, 7, 7][l[4]], [1, 3, 1, 5, 1, 7, 7][l[5]]])))
        end:
    a:= n-> b(2*n, 0, [1$5]):
    seq(a(n), n=0..35);
  • Mathematica
    b[x_, y_, l_] := b[x, y, l] = Module[{m = Min[l]},
            If[y>x || y<0 || 7-m>x, 0, If[x == 0, 1,
            b[x-1, y+1, MapIndexed[#1[[l[[#2[[1]] ]] ]]&,
            {{2, 3, 4, 4, 2, 2, 7},
             {2, 3, 3, 5, 3, 2, 7},
             {2, 3, 3, 2, 6, 3, 7},
             {2, 2, 4, 5, 2, 4, 7},
             {2, 2, 4, 2, 6, 2, 7}}]]] +
            b[x-1, y-1, MapIndexed[#1[[l[[#2[[1]] ]] ]]&,
            {{1, 1, 1, 5, 6, 7, 7},
             {1, 1, 4, 1, 6, 7, 7},
             {1, 1, 4, 5, 1, 7, 7},
             {1, 3, 1, 3, 6, 7, 7},
             {1, 3, 1, 5, 1, 7, 7}}]]]];
    a[n_] := b[2n, 0, {1, 1, 1, 1, 1}];
    a /@ Range[0, 35] (* Jean-François Alcover, Jan 26 2021, after Alois P. Heinz *)

A243998 Number T(n,k) of Dyck paths of semilength n with exactly k (possibly overlapping) occurrences of some of the consecutive patterns of Dyck paths of semilength 3; triangle T(n,k), n>=0, 0<=k<=max(0,n-2), read by rows.

Original entry on oeis.org

1, 1, 2, 0, 5, 1, 11, 2, 1, 33, 7, 1, 4, 90, 30, 7, 1, 11, 245, 142, 24, 6, 1, 29, 680, 570, 121, 24, 5, 1, 81, 1884, 2176, 578, 112, 25, 5, 1, 220, 5265, 7935, 2649, 580, 116, 25, 5, 1, 608, 14747, 28022, 11827, 2825, 602, 124, 25, 5, 1
Offset: 0

Views

Author

Alois P. Heinz, Jun 17 2014

Keywords

Comments

The consecutive patterns 101010, 101100, 110010, 110100, 111000 are counted. Here 1=Up=(1,1), 0=Down=(1,-1).

Examples

			T(3,1) = 5: 101010, 101100, 110010, 110100, 111000.
T(4,0) = 1: 11001100.
T(4,2) = 2: 10101010, 10110010.
T(5,0) = 1: 1110011000.
T(6,3) = 7: 101010101100, 101010110010, 101100101010, 101100101100, 110010101010, 110010110010, 110101010100.
Triangle T(n,k) begins:
:  0 :   1;
:  1 :   1;
:  2 :   2;
:  3 :   0,    5;
:  4 :   1,   11,    2;
:  5 :   1,   33,    7,    1;
:  6 :   4,   90,   30,    7,   1;
:  7 :  11,  245,  142,   24,   6,   1;
:  8 :  29,  680,  570,  121,  24,   5,  1;
:  9 :  81, 1884, 2176,  578, 112,  25,  5, 1;
: 10 : 220, 5265, 7935, 2649, 580, 116, 25, 5, 1;
		

Crossrefs

Column k=0 gives A243986.
Row sums give A000108.

Programs

  • Maple
    b:= proc(x, y, t) option remember; `if`(y<0 or y>x, 0,
          `if`(x=0, 1, expand(add(b(x-1, y-1+2*j, irem(2*t+j, 32))*
          `if`(2*t+j in {42, 44, 50, 52, 56}, z, 1), j=0..1))))
        end:
    T:= n-> (p-> seq(coeff(p, z, i), i=0..degree(p)))(b(2*n, 0, 0)):
    seq(T(n), n=0..14);
  • Mathematica
    b[x_, y_, t_] := b[x, y, t] = If[y < 0 || y > x, 0,
         If[x == 0, 1, Expand[Sum[b[x-1, y-1 + 2j, Mod[2t+j, 32]]*
         Switch[2t+j, 42|44|50|52|56, z, _, 1], {j, 0, 1}]]]];
    T[n_] := CoefficientList[b[2n, 0, 0], z];
    Table[T[n], {n, 0, 14}] // Flatten (* Jean-François Alcover, Apr 30 2022, after Alois P. Heinz *)
Showing 1-2 of 2 results.