cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A243986 Number of Dyck paths of semilength n avoiding all five consecutive patterns of Dyck paths of semilength 3.

Original entry on oeis.org

1, 1, 2, 0, 1, 1, 4, 11, 29, 81, 220, 608, 1676, 4633, 12847, 35685, 99367, 277256, 775197, 2171691, 6095329, 17138861, 48274370, 136197884, 384868351, 1089211676, 3087038820, 8761410780, 24898994687, 70850054269, 201848300443, 575723018363, 1643931888516
Offset: 0

Views

Author

Alois P. Heinz, Jun 16 2014

Keywords

Comments

The consecutive patterns 101010, 101100, 110010, 110100, 111000 are avoided. Here 1=Up=(1,1), 0=Down=(1,-1).

Examples

			a(n) = A000108(n) for n<3.
a(3) = 0 because no Dyck path of semilength 3 can avoid itself.
a(4) = 1: 11001100.
a(5) = 1: 1110011000.
a(6) = 4: 101110011000, 110011001100, 111001100010, 111100110000.
a(7) = 11: 10101110011000, 10111001100010, 10111100110000, 11001110011000, 11011100110000, 11100110001010, 11100110001100, 11100110011000, 11110011000010, 11110011000100, 11111001100000.
		

Crossrefs

Column k=0 of A243998.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<18, [1$2, 2, 0, 1$2, 4, 11, 29,
           81, 220, 608, 1676, 4633, 12847, 35685, 99367, 277256][n+1],
          ((4*n-80)*a(n-18) +(16*n-302)*a(n-17) +(17*n-295)*a(n-16)
          -(15*n-273)*a(n-15) -(61*n-971)*a(n-14) -(73*n-1043)*a(n-13)
          -(19*n-191)*a(n-12) +(64*n-857)*a(n-11) +(114*n-1281)*a(n-10)
          +(90*n-855)*a(n-9) +(11*n-40)*a(n-8) -(53*n-433)*a(n-7)
          -(74*n-478)*a(n-6) -(42*n-225)*a(n-5) -(7*n-50)*a(n-4)
          +(10*n-17)*a(n-3) +(6*n-12)*a(n-2) +(n-2)*a(n-1))/(n+1))
        end:
    seq(a(n), n=0..40);
  • Mathematica
    b[x_, y_, t_] := b[x, y, t] = If[y<0 || y>x, 0, If[x == 0, 1, Expand[ Sum[b[x - 1, y - 1 + 2j, Mod[2t + j, 32]]*If[MemberQ[{42, 44, 50, 52, 56}, 2t + j], z, 1], {j, 0, 1}]]]];
    a[n_] := Coefficient[b[2n, 0, 0], z, 0];
    a /@ Range[0, 40] (* Jean-François Alcover, Dec 21 2020, after Alois P. Heinz in A243998 *)

Formula

Recurrence: see Maple program.
a(n) ~ c * d^n / n^(3/2), where d = 2.97831791935148503707065... is the root of the equation 4 + 12*d + 9*d^2 - 8*d^3 - 28*d^4 - 32*d^5 - 14*d^6 + 10*d^7 + 30*d^8 + 24*d^9 + 13*d^10 - 2*d^11 - 5*d^12 - 2*d^13 + d^14 = 0, c = 0.232860224447544532825428... . - Vaclav Kotesovec, Sep 06 2014
Showing 1-1 of 1 results.