A243969 Integers n not of form 3m+2 such that for any integer k > 0, n*10^k+1 has a divisor in the set { 7, 11, 13, 37 }.
9175, 9351, 17676, 24826, 26038, 28612, 38026, 38158, 46212, 46927, 48247, 56473, 61863, 63075, 63898, 65649, 75063, 75195, 83425, 83964, 85284, 91750, 93510, 100935
Offset: 1
Keywords
Examples
9175*10^k+1 is divisible by 11 for k of form 6m+1, 6m+3, 6m+5, by 37 for k of form 6m (and also 6m+3), by 13 for 6m+2, and by 7 for 6m+4. This covers all k. {7, 11, 13, 37} is called a covering set. - _Jens Kruse Andersen_, Jul 09 2014
Links
- A. Brunner, C. Caldwell, D. Krywaruczensko, C. Lownsdale, Generalized Sierpiński Numbers Base b (has a typo in covering set for 9175, base 10. - _Jens Kruse Andersen_, Jul 09 2014)
Formula
For n>24 a(n) = a(n-24) + 111111.
Extensions
Definition corrected by Jens Kruse Andersen, Jul 09 2014
Comments