A243978 Triangle T(n,k), n>=0, 0<=k<=n, read by rows: T(n,k) is the number of partitions of n where the minimal multiplicity of any part is k.
1, 0, 1, 0, 1, 1, 0, 2, 0, 1, 0, 3, 1, 0, 1, 0, 6, 0, 0, 0, 1, 0, 7, 2, 1, 0, 0, 1, 0, 13, 1, 0, 0, 0, 0, 1, 0, 16, 4, 0, 1, 0, 0, 0, 1, 0, 25, 2, 2, 0, 0, 0, 0, 0, 1, 0, 33, 6, 1, 0, 1, 0, 0, 0, 0, 1, 0, 49, 4, 2, 0, 0, 0, 0, 0, 0, 0, 1, 0, 61, 9, 3, 2, 0, 1, 0, 0, 0, 0, 0, 1, 0, 90, 6, 3, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 113, 16, 2, 2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 156, 9, 7, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 0
Examples
Triangle starts: 00: 1; 01: 0, 1; 02: 0, 1, 1; 03: 0, 2, 0, 1; 04: 0, 3, 1, 0, 1; 05: 0, 6, 0, 0, 0, 1; 06: 0, 7, 2, 1, 0, 0, 1; 07: 0, 13, 1, 0, 0, 0, 0, 1; 08: 0, 16, 4, 0, 1, 0, 0, 0, 1; 09: 0, 25, 2, 2, 0, 0, 0, 0, 0, 1; 10: 0, 33, 6, 1, 0, 1, 0, 0, 0, 0, 1; 11: 0, 49, 4, 2, 0, 0, 0, 0, 0, 0, 0, 1; 12: 0, 61, 9, 3, 2, 0, 1, 0, 0, 0, 0, 0, 1; 13: 0, 90, 6, 3, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1; 14: 0, 113, 16, 2, 2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1; 15: 0, 156, 9, 7, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1; 16: 0, 198, 23, 3, 4, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1; 17: 0, 269, 18, 5, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1; 18: 0, 334, 34, 9, 3, 1, 2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1; 19: 0, 448, 27, 8, 3, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1; 20: 0, 556, 51, 7, 6, 3, 2, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1; ... The A000041(9) = 30 partitions of 9 with the least multiplicities of any part are: 01: [ 1 1 1 1 1 1 1 1 1 ] 9 02: [ 1 1 1 1 1 1 1 2 ] 1 03: [ 1 1 1 1 1 1 3 ] 1 04: [ 1 1 1 1 1 2 2 ] 2 05: [ 1 1 1 1 1 4 ] 1 06: [ 1 1 1 1 2 3 ] 1 07: [ 1 1 1 1 5 ] 1 08: [ 1 1 1 2 2 2 ] 3 09: [ 1 1 1 2 4 ] 1 10: [ 1 1 1 3 3 ] 2 11: [ 1 1 1 6 ] 1 12: [ 1 1 2 2 3 ] 1 13: [ 1 1 2 5 ] 1 14: [ 1 1 3 4 ] 1 15: [ 1 1 7 ] 1 16: [ 1 2 2 2 2 ] 1 17: [ 1 2 2 4 ] 1 18: [ 1 2 3 3 ] 1 19: [ 1 2 6 ] 1 20: [ 1 3 5 ] 1 21: [ 1 4 4 ] 1 22: [ 1 8 ] 1 23: [ 2 2 2 3 ] 1 24: [ 2 2 5 ] 1 25: [ 2 3 4 ] 1 26: [ 2 7 ] 1 27: [ 3 3 3 ] 3 28: [ 3 6 ] 1 29: [ 4 5 ] 1 30: [ 9 ] 1 Therefore row n=9 is [0, 25, 2, 2, 0, 0, 0, 0, 0, 1].
Links
- Joerg Arndt and Alois P. Heinz, Table of n, a(n) for n = 0..10010 (rows 0..140, flattened)
Crossrefs
Programs
-
Maple
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, b(n, i-1, k) +add(b(n-i*j, i-1, k), j=max(1, k)..n/i))) end: T:= (n, k)-> b(n$2, k) -`if`(n=0 and k=0, 0, b(n$2, k+1)): seq(seq(T(n, k), k=0..n), n=0..14);
-
Mathematica
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i<1, 0, b[n, i-1, k] + Sum[b[n-i*j, i-1, k], {j, Max[1, k], n/i}]]]; T[n_, k_] := b[n, n, k] - If[n == 0 && k == 0, 0, b[n, n, k+1]]; Table[Table[T[n, k], {k, 0, n}], {n, 0, 14}] // Flatten (* Jean-François Alcover, Jan 08 2015, translated from Maple *)
Comments