cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A243987 Triangle read by rows: T(n, k) is the number of divisors of n that are less than or equal to k for 1 <= k <= n.

Original entry on oeis.org

1, 1, 2, 1, 1, 2, 1, 2, 2, 3, 1, 1, 1, 1, 2, 1, 2, 3, 3, 3, 4, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 3, 3, 3, 3, 4, 1, 1, 2, 2, 2, 2, 2, 2, 3, 1, 2, 2, 2, 3, 3, 3, 3, 3, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 3, 4, 4, 5, 5, 5, 5, 5, 5, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 1, 1, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4
Offset: 1

Views

Author

Dennis P. Walsh, Jun 16 2014

Keywords

Comments

This triangular sequence T(n,k) generalizes sequence A000005, the number of divisors of n; in particular, A000005(n) = T(n,n).
Also, for prime p, T(p,k) = 1 when k < p and T(p,p) = 2.

Examples

			T(6,4)=3 since there are 3 divisors of 6 that are less than or equal to 4, namely, 1, 2 and 3.
T(n,k) as a triangle, n=1..15:
1,
1, 2,
1, 1, 2,
1, 2, 2, 3,
1, 1, 1, 1, 2,
1, 2, 3, 3, 3, 4,
1, 1, 1, 1, 1, 1, 2,
1, 2, 2, 3, 3, 3, 3, 4,
1, 1, 2, 2, 2, 2, 2, 2, 3,
1, 2, 2, 2, 3, 3, 3, 3, 3, 4
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2,
1, 2, 3, 4, 4, 5, 5, 5, 5, 5, 5, 6,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2,
1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4,
1, 1, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4
		

Crossrefs

Cf. A000005 (diagonal), A000012 (first column), A081307 (row sums), A027750 (divisors of n).

Programs

  • Haskell
    a243987 n k = a243987_tabl !! (n-1) !! (k-1)
    a243987_row n = a243987_tabl !! (n-1)
    a243987_tabl = map (scanl1 (+)) a051731_tabl
    -- Reinhard Zumkeller, Apr 22 2015
  • Maple
    T:=(n,k)->1/n!*eval(diff(sum(x^j/(1-x^j),j=1..k),x$n),x=0):
    seq(seq(T(n,k), k=1..n), n=1..10);
    # Alternative:
    IversonBrackets := expr -> subs(true=1, false=0, evalb(expr)):
    T := (n, k) -> add(IversonBrackets(irem(n, j) = 0), j = 1..k):
    for n from 1 to 19 do seq(T(n, k), k = 1..n) od; # Peter Luschny, Jan 02 2021
  • PARI
    T(n, k) = sumdiv(n, d, d<=k); \\ Michel Marcus, Jun 17 2014
    

Formula

T(n,1) = 1; T(n,n) = A000005(n).
T(n,k) = coefficient of the x^n term in the expansion of Sum(x^j/(1-x^j), j=1..k).
T(n,k) = Sum_{j=1..k} A051731(n,j). - Reinhard Zumkeller, Apr 22 2015