A243987 Triangle read by rows: T(n, k) is the number of divisors of n that are less than or equal to k for 1 <= k <= n.
1, 1, 2, 1, 1, 2, 1, 2, 2, 3, 1, 1, 1, 1, 2, 1, 2, 3, 3, 3, 4, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 3, 3, 3, 3, 4, 1, 1, 2, 2, 2, 2, 2, 2, 3, 1, 2, 2, 2, 3, 3, 3, 3, 3, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 3, 4, 4, 5, 5, 5, 5, 5, 5, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 1, 1, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4
Offset: 1
Examples
T(6,4)=3 since there are 3 divisors of 6 that are less than or equal to 4, namely, 1, 2 and 3. T(n,k) as a triangle, n=1..15: 1, 1, 2, 1, 1, 2, 1, 2, 2, 3, 1, 1, 1, 1, 2, 1, 2, 3, 3, 3, 4, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 3, 3, 3, 3, 4, 1, 1, 2, 2, 2, 2, 2, 2, 3, 1, 2, 2, 2, 3, 3, 3, 3, 3, 4 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 3, 4, 4, 5, 5, 5, 5, 5, 5, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 1, 1, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4
Links
- Reinhard Zumkeller, Rows n = 1..125 of triangle, flattened
- Dennis P. Walsh, Notes on counting the divisors of n
Crossrefs
Programs
-
Haskell
a243987 n k = a243987_tabl !! (n-1) !! (k-1) a243987_row n = a243987_tabl !! (n-1) a243987_tabl = map (scanl1 (+)) a051731_tabl -- Reinhard Zumkeller, Apr 22 2015
-
Maple
T:=(n,k)->1/n!*eval(diff(sum(x^j/(1-x^j),j=1..k),x$n),x=0): seq(seq(T(n,k), k=1..n), n=1..10); # Alternative: IversonBrackets := expr -> subs(true=1, false=0, evalb(expr)): T := (n, k) -> add(IversonBrackets(irem(n, j) = 0), j = 1..k): for n from 1 to 19 do seq(T(n, k), k = 1..n) od; # Peter Luschny, Jan 02 2021
-
PARI
T(n, k) = sumdiv(n, d, d<=k); \\ Michel Marcus, Jun 17 2014
Formula
T(n,1) = 1; T(n,n) = A000005(n).
T(n,k) = coefficient of the x^n term in the expansion of Sum(x^j/(1-x^j), j=1..k).
T(n,k) = Sum_{j=1..k} A051731(n,j). - Reinhard Zumkeller, Apr 22 2015
Comments