A244044 Number of length n words on alphabet {0,1,2,3} which contain all 16 of the 2-letter strings of the alphabet.
331776, 5806080, 69672960, 675578880, 5675235840, 42832800000, 297267224832, 1927826369280, 11821052680704, 69152452363584, 388663047288576, 2110540207741632, 11123834480487936, 57120835559901696, 286669843226634240, 1409843999618778240, 6809949521252980992
Offset: 17
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 17..150
Crossrefs
Cf. A243862.
Programs
-
Maple
b:= proc(n, t, s) option remember; `if`(s={}, 4^n, `if`(nops(s)>n, 0, add(b(n-1, j, s minus {4*t+j}), j=0..3))) end: a:= n-> 4*b(n-1, 0, {$0..15}): seq(a(n), n=17..25); # Alois P. Heinz, Jun 18 2014
-
Mathematica
abcd=Solve[{aa==uaa(z^2+z(aa+ab+ac+ad)), ab==uab(z^2+z(ba+bb+bc+bd)), ac==uac(z^2+z(ca+cb+cc+cd)),ad==uad(z^2+z(da+db+dc+dd)),ba==uba(z^2+z(aa+ab+ac+ad)), bb==ubb(z^2+z(ba+bb+bc+bd)),bc==ubc(z^2+z(ca+cb+cc+cd)),bd==ubd(z^2+z(da+db+dc+dd)), ca==uca(z^2+z(aa+ab+ac+ad)),cb==ucb(z^2+z(ba+bb+bc+bd)),cc==ucc(z^2+z(ca+cb+cc+cd)), cd==ucd(z^2+z(da+db+dc+dd)),da==uda(z^2+z(aa+ab+ac+ad)),db==udb(z^2+z(ba+bb+bc+bd)), dc==udc(z^2+z(ca+cb+cc+cd)),dd==udd(z^2+z(da+db+dc+dd))},{aa,ab,ac,ad,ba,bb,bc,bd,ca,cb,cc,cd,da,db,dc,dd}]; fz[uaa_,uab_,uac_,uad_,uba_,ubb_,ubc_,ubd_,uca_,ucb_,ucc_,ucd_,uda_,udb_,udc_,udd_] =aa+ab+ac+ad+ba+bb+bc+bd+ca+cb+cc+cd+da+db+dc+dd/.abcd//Simplify; t=Map[Total[Map[Apply[fz,#]&,#]]&,Table[Select[Tuples[{0,1},16],Count[#,0]==n&],{n,0,16}]]; nn=35;Drop[Flatten[CoefficientList[Series[Sum[(-1)^(i+1)t[[i]],{i,1,16}],{z,0,nn}],z]],17]
Comments