A244095 Primes of the form (p + q)^2 + 1, where p and q are consecutive primes.
577, 1297, 7057, 8101, 14401, 41617, 44101, 57601, 90001, 115601, 147457, 156817, 331777, 484417, 547601, 746497, 820837, 864901, 894917, 933157, 1299601, 1664101, 1742401, 1822501, 1887877, 1988101, 2131601, 2232037, 2702737, 2944657, 3218437
Offset: 1
Keywords
Examples
577 is in the sequence because (11 + 13)^2 + 1 = 577, which is prime. 1297 is in the sequence because (17 + 19)^2 + 1 = 1297, which is prime.
Links
- K. D. Bajpai, Table of n, a(n) for n = 1..10000
Programs
-
Magma
[t: p in PrimesUpTo(1000) | IsPrime(t) where t is (p+NextPrime(p))^2+1]; // Bruno Berselli, Jun 24 2014
-
Maple
with(numtheory):A244095:= proc() local k,p,q; p:=ithprime(n); q:=ithprime(n+1); k:=(p+q)^2 + 1; if isprime(k) then RETURN (k); fi; end: seq(A244095 (), n=1..300);
-
Mathematica
A244095 = {}; Do[k = (Prime[n] + Prime[n + 1])^2 + 1; If[PrimeQ[k], AppendTo[A244095, k]], {n, 2, 300}]; A244095
Comments