A244112 Reverse digit count of n in decimal representation.
10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 1110, 21, 1211, 1311, 1411, 1511, 1611, 1711, 1811, 1911, 1210, 1211, 22, 1312, 1412, 1512, 1612, 1712, 1812, 1912, 1310, 1311, 1312, 23, 1413, 1513, 1613, 1713, 1813, 1913, 1410, 1411, 1412, 1413, 24, 1514, 1614, 1714
Offset: 0
Examples
101 contains two 1s and one 0, therefore a(101) = 2110; 102 contains one 2, one 1 and one 0, therefore a(102) = 121110.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
Programs
-
Haskell
import Data.List (sort, group); import Data.Function (on) a244112 :: Integer -> Integer a244112 n = read $ concat $ zipWith ((++) `on` show) (map length xs) (map head xs) where xs = group $ reverse $ sort $ map (read . return) $ show n
-
Mathematica
f[n_] := Block[{s = Split@ IntegerDigits@ n}, FromDigits@ Reverse@ Riffle[Union@ Flatten@ s, Length@# & /@ s]]; Array[f, 48, 0] (* Robert G. Wilson v, Dec 01 2016 *)
-
PARI
A244112(n,c=1,S="")={for(i=2,#n=vecsort(digits(n),,4),n[i]==n[i-1]&&c++&&next;S=Str(S,c,n[i-1]);c=1);eval(Str(S,c,if(n,n[#n])))} \\ M. F. Hasler, Feb 25 2018
-
Python
def A244112(n): return int(''.join([str(str(n).count(d))+d for d in '9876543210' if str(n).count(d) > 0])) # Chai Wah Wu, Dec 01 2016
Comments