cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A278440 Numbers n such that A244112(n) | n.

Original entry on oeis.org

22, 777, 4444, 68868, 200000, 303030, 333000, 333333, 555555, 660000, 660660, 666666, 700000, 2332200, 3131313, 4444400, 6060600, 7007000, 7700000, 9009790, 9656955, 9885585, 11517771, 14233221, 14331231, 14333110, 14411040, 15143331, 15233221, 15331231, 15333110
Offset: 1

Views

Author

Paolo P. Lava, Nov 25 2016

Keywords

Comments

A244112(68868) = 3826 and 68868 / 3826 = 18.

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q) local a,b,c,d,j,k,n; for n from 1 to q do a:=sort(convert(n,base,10));
    for k from 1 to trunc(nops(a)/2) do c:=a[k]; a[k]:=a[nops(a)-k+1]; a[nops(a)-k+1]:=c; od;  k:=1; b:=a[1]; c:=0;
    for j from 2 to nops(a) do if a[j]=b then k:=k+1; else d:=10*k+b; c:=c*10^(ilog10(d)+1)+d; k:=1; b:=a[j]; fi; od;
    d:=10*k+b; c:=c*10^(ilog10(d)+1)+d; if type(n/c,integer) then print(n); fi; od; end: P(10^99);
  • Mathematica
    Select[Range[10^6], Divisible[#, FromDigits@ Flatten@ Map[IntegerDigits, DeleteCases[#, k_ /; First@ k == 0]] &@ Reverse@ MapIndexed[{#1, (First@ #2 - 1)} &, RotateRight@ DigitCount@ #]] &] (* Michael De Vlieger, Dec 12 2016 *)

A278441 Numbers n such that n | A244112(n).

Original entry on oeis.org

1, 2, 5, 10, 22, 26, 32, 62, 91, 330, 370, 519, 575, 710, 1060, 4055, 29377, 79554, 108690, 150320, 306440, 2510048, 3605570, 14233221, 14331231, 14333110, 14509410, 15143331, 15233221, 15331231, 15333110, 16143331, 16153331, 16233221, 16331231, 16333110, 17143331
Offset: 1

Views

Author

Paolo P. Lava, Nov 25 2016

Keywords

Comments

The sequence is bounded. See comment in A278439.

Examples

			A244112(519) = 191511 and 191511 / 519 = 369.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q) local a,b,c,d,j,k,n; for n from 1 to q do a:=sort(convert(n,base,10));
    for k from 1 to trunc(nops(a)/2) do c:=a[k]; a[k]:=a[nops(a)-k+1]; a[nops(a)-k+1]:=c; od;  k:=1; b:=a[1]; c:=0;
    for j from 2 to nops(a) do if a[j]=b then k:=k+1; else d:=10*k+b; c:=c*10^(ilog10(d)+1)+d; k:=1; b:=a[j]; fi; od;
    d:=10*k+b; c:=c*10^(ilog10(d)+1)+d; if type(c/n,integer) then print(n); fi; od; end: P(10^99);

A343455 Numbers where A244112(n) = n.

Original entry on oeis.org

22, 14233221, 14331231, 14333110, 15143331, 15233221, 15331231, 15333110, 16143331, 16153331, 16233221, 16331231, 16333110, 17143331, 17153331, 17163331, 17233221, 17331231, 17333110, 18143331, 18153331, 18163331, 18173331, 18233221, 18331231, 18333110, 19143331
Offset: 1

Views

Author

J. Lowell, Apr 15 2021

Keywords

Comments

Intersection of A278440 and A278441.
Fixed points of A244112.

Examples

			14233221 has one 4, two 3's, three 2's, and two 1's.
		

Crossrefs

Extensions

a(9) and beyond from Martin Ehrenstein, Apr 16 2021

A010785 Repdigit numbers, or numbers whose digits are all equal.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 22, 33, 44, 55, 66, 77, 88, 99, 111, 222, 333, 444, 555, 666, 777, 888, 999, 1111, 2222, 3333, 4444, 5555, 6666, 7777, 8888, 9999, 11111, 22222, 33333, 44444, 55555, 66666, 77777, 88888, 99999, 111111, 222222, 333333, 444444, 555555, 666666
Offset: 0

Views

Author

Keywords

Comments

Complement of A139819. - David Wasserman, May 21 2008
Subsequence of A134336 and of A178403. - Reinhard Zumkeller, May 27 2010
Subsequence of A193460. - Reinhard Zumkeller, Jul 26 2011
Intersection of A009994 and A009996. - David F. Marrs, Sep 29 2018
Beiler (1964) called these numbers "monodigit numbers". The term "repdigit numbers" was used by Trigg (1974). - Amiram Eldar, Jan 21 2022

References

  • Albert H. Beiler, Recreations in the Theory of Numbers, Dover, New York, 1964, p. 83.

Crossrefs

Programs

  • Haskell
    a010785 n = a010785_list !! n
    a010785_list = 0 : r [1..9] where
       r (x:xs) = x : r (xs ++ [10*x + x `mod` 10])
    -- Reinhard Zumkeller, Jul 26 2011
    
  • Magma
    [(n-9*Floor((n-1)/9))*(10^Floor((n+8)/9)-1)/9: n in [0..50]]; // Vincenzo Librandi, Nov 10 2014
    
  • Maple
    A010785 := proc(n)
        (n-9*floor(((n-1)/9)))*((10^(floor(((n+8)/9)))-1)/9) ;
    end proc:
    seq(A010785(n), n = 0 .. 100); # Robert Israel, Nov 09 2014
  • Mathematica
    fQ[n_]:=Module[{id=IntegerDigits[n]}, Length[Union[id]]==1]; Select[Range[0,10000], fQ] (* Vladimir Joseph Stephan Orlovsky, Dec 29 2010 *)
    Union[FromDigits/@Flatten[Table[PadRight[{},i,n],{n,0,9},{i,6}],1]] (* or *) LinearRecurrence[{0,0,0,0,0,0,0,0,11,0,0,0,0,0,0,0,0,-10}, {0,1,2,3,4,5,6,7,8,9,11,22,33,44,55,66,77,88},40] (* Harvey P. Dale, Dec 28 2011 *)
    Union@ Flatten@ Table[k (10^n - 1)/9, {k, 0, 9}, {n, 6}] (* Robert G. Wilson v, Oct 09 2014 *)
    Table[(n - 9 Floor[(n-1)/9]) (10^Floor[(n+8)/9] - 1)/9, {n, 0, 50}] (* José de Jesús Camacho Medina, Nov 06 2014 *)
  • PARI
    a(n)=10^((n+8)\9)\9*((n-1)%9+1) \\ Charles R Greathouse IV, Jun 15 2011
    
  • PARI
    nxt(n,t=n%10)=if(t<9,n*(t+1),n*10+9)\t \\ Yields the term a(k+1) following a given term a(k)=n. M. F. Hasler, Jun 24 2016
    
  • PARI
    is(n)={1==#Set(digits(n))}
    inv(n) = 9*#Str(n) + n%10 - 9 \\ David A. Corneth, Jun 24 2016
    
  • Python
    def a(n): return 0 if n == 0 else int(str((n-1)%9+1)*((n-1)//9+1))
    print([a(n) for n in range(55)]) # Michael S. Branicky, Dec 29 2021
    
  • Python
    print([0]+[int(d*r) for r in range(1, 7) for d in "123456789"]) # Michael S. Branicky, Dec 29 2021
    
  • Python
    # without string operations
    def a(n): return 0 if n == 0 else (10**((n-1)//9+1)-1)//9*((n-1)%9+1)
    print([a(n) for n in range(55)]) # Michael S. Branicky, Nov 03 2023

Formula

A037904(a(n)) = 0. - Reinhard Zumkeller, Dec 14 2007
A178401(a(n)) > 0. - Reinhard Zumkeller, May 27 2010
From Reinhard Zumkeller, Jul 26 2011: (Start)
For n > 0: A193459(a(n)) = A000005(a(n)).
for n > 10: a(n) mod 10 = floor(a(n)/10) mod 10.
A010879(n) = A010879(A059995(n)). (End)
A202022(a(n)) = 1. - Reinhard Zumkeller, Dec 09 2011
a(0)=0, a(1)=1, a(2)=2, a(3)=3, a(4)=4, a(5)=5, a(6)=6, a(7)=7, a(8)=8, a(9)=9, a(10)=11, a(11)=22, a(12)=33, a(13)=44, a(14)=55, a(15)=66, a(16)=77, a(17)=88, a(n) = 11*a(n-9) - 10*a(n-18). - Harvey P. Dale, Dec 28 2011
A151949(a(n)) = 0; A180410(a(n)) = A227362(a(n)). - Reinhard Zumkeller, Jul 09 2013
a(n) = (n - 9*floor((n-1)/9))*(10^floor((n+8)/9) - 1)/9. - José de Jesús Camacho Medina, Nov 06 2014
G.f.: x*(1+2*x+3*x^2+4*x^3+5*x^4+6*x^5+7*x^6+8*x^7+9*x^8)/((1-x^9)*(1-10*x^9)). - Robert Israel, Nov 09 2014
A047842(a(n)) = A244112(a(n)). - Reinhard Zumkeller, Nov 11 2014
Sum_{n>=1} 1/a(n) = (7129/2520) * A065444 = 3.11446261209177581335... - Amiram Eldar, Jan 21 2022

Extensions

Name clarified by Jon E. Schoenfield, Nov 10 2023

A047842 Describe n (count digits in order of increasing value, ignoring missing digits).

Original entry on oeis.org

10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 1011, 21, 1112, 1113, 1114, 1115, 1116, 1117, 1118, 1119, 1012, 1112, 22, 1213, 1214, 1215, 1216, 1217, 1218, 1219, 1013, 1113, 1213, 23, 1314, 1315, 1316, 1317, 1318, 1319, 1014, 1114, 1214, 1314, 24, 1415, 1416
Offset: 0

Views

Author

Keywords

Comments

Digit count of n. The digit count numerically summarizes the frequency of digits 0 through 9 in that order when they occur in a number. - Lekraj Beedassy, Jan 11 2007
Numbers which are digital permutations of one another have the same digit count. Compare with first entries of "Look And Say" or LS sequence A045918. As in the latter, a(n) has first odd-numbered-digit entry occurring at n=1111111111 with digit count 101, but a(n) has first ambiguous term 1011. For digit count invariants, i.e., n such that a(n)=n, see A047841. - Lekraj Beedassy, Jan 11 2007

Examples

			a(31) = 1113 because (one 1, one 3) make up 31.
101 contains one 0 and two 1's, so a(101) = 1021.
a(131) = 2113.
For n = 20231231, the digits of the date 2023-12-31, last day of 2023, a(n) = 10213223 is a fixed point: a(a(n)) = a(n) (cf. A235775). Since a(n) is invariant under permutation of the digits of n (leading zeros avoided), this is independent of the chosen notation, yyyy-mm-dd or mm/dd/yyyy or dd.mm.yyyy. - _M. F. Hasler_, Jan 11 2024
		

Crossrefs

Cf. A235775.
Cf. A244112 (the same but in order of decreasing value of digits), A010785.
Cf. A005150 (Look and Say: describe the number digit-wise instead of overall count).
Cf. A328447 (least m having the same digits as n).

Programs

  • Haskell
    import Data.List (sort, group); import Data.Function (on)
    a047842 :: Integer -> Integer
    a047842 n = read $ concat $
       zipWith ((++) `on` show) (map length xs) (map head xs)
       where xs = group $ sort $ map (read . return) $ show n
    -- Reinhard Zumkeller, Jan 15 2014
    
  • Mathematica
    dc[n_] :=FromDigits@Flatten@Select[Table[{DigitCount[n, 10, k], k}, {k, 0, 9}], #[[1]] > 0 &];Table[dc[n], {n, 0, 46}] (* Ray Chandler, Jan 09 2009 *)
    Array[FromDigits@ Flatten@ Map[Reverse, Tally@ Sort@ IntegerDigits@ #] &, 46] (* Michael De Vlieger, Jul 15 2020 *)
  • PARI
    A047842(n)={if(n, local(c=1, S="", d=vecsort(digits(n)), a(i)=Str(S, c, d[i])); for(i=2, #d, if(d[i]==d[i-1], c++, S=a(i-1); c=1)); eval(a(#d)), 10)} \\ M. F. Hasler, Feb 25 2018; edited Jan 10 2024
  • Python
    def A047842(n):
        s, x = '', str(n)
        for i in range(10):
            y = str(i)
            c = str(x.count(y))
            if c != '0':
                s += c+y
        return int(s) # Chai Wah Wu, Jan 03 2015
    

Formula

a(a(n)) = A235775(n). [By definition of A235775. - M. F. Hasler, Jan 11 2024]
a(A010785(n)) = A244112(A010785(n)). - Reinhard Zumkeller, Nov 11 2014
a(n) = a(A328447(n)) = a(m) for all n and all m having the same digits as n, with multiplicity. - M. F. Hasler, Jan 11 2024

Extensions

Edited by N. J. A. Sloane, Jul 03 2008 at the suggestion of R. J. Mathar

A036058 Summarize digits of preceding number, by decreasing digit value. Start with a(0) = 0.

Original entry on oeis.org

0, 10, 1110, 3110, 132110, 13123110, 23124110, 1413223110, 1423224110, 2413323110, 1433223110, 1433223110, 1433223110, 1433223110, 1433223110, 1433223110, 1433223110, 1433223110, 1433223110, 1433223110, 1433223110
Offset: 0

Views

Author

Keywords

Comments

This kind of counting sequence is always eventually periodic with period 1, 2 or 3. - Herve Lehning (lehning(AT)noos.fr), Oct 01 2003

Examples

			The third term is 1110 because the second term contains one 1 and one 0.
		

Crossrefs

Cf. A007890 (same as this, starting at 1), A001155 (same as this, but using method A047842: by increasing digit value), A005150 (as before, starting at 1), A036059 ("fibonacci" based on this), A036066.

Programs

  • PARI
    a(n)=if(n>9,1433223110,[0,10,1110,3110,132110,13123110,23124110,1413223110, 1423224110,2413323110][n+1]) \\ Charles R Greathouse IV, Jul 24 2012
    
  • PARI
    a(n,a=0)={for(k=1,n,a==(a=A244112(a))&&break);a} \\ M. F. Hasler, Feb 25 2018

Formula

a(n+1) = A244112(a(n)), a(0) = 0. - M. F. Hasler, Feb 25 2018

A007890 Summarize the previous term! (in decreasing order).

Original entry on oeis.org

1, 11, 21, 1211, 1231, 131221, 132231, 232221, 134211, 14131231, 14231241, 24132231, 14233221, 14233221, 14233221, 14233221, 14233221, 14233221, 14233221, 14233221, 14233221, 14233221, 14233221, 14233221, 14233221, 14233221, 14233221, 14233221
Offset: 1

Views

Author

Keywords

Examples

			For example, the term after 131221 is obtained by saying "one 3, two 2's, three 1's", which gives 13-22-31, i.e. 132231.
		

Crossrefs

Programs

  • Mathematica
    Nest[Append[#, FromDigits@ Flatten@ Map[Reverse, Tally@ ReverseSort@ IntegerDigits@ #[[-1]] ] ] &, {1}, 24] (* Michael De Vlieger, Jul 15 2020 *)

Formula

From Seiichi Manyama, Aug 18 2020: (Start)
a(1) = 1 and a(n) = A244112(a(n-1)) for n > 1.
a(n) = 14233221 for n >= 13. (End)

A036066 The summarize Lucas sequence: summarize the previous two terms, start with 1, 3.

Original entry on oeis.org

1, 3, 1311, 2331, 331241, 14432231, 34433241, 54533231, 2544632221, 163534435221, 263544436231, 363554634231, 463554733221, 17364544733221, 37263554634231, 37363554734231, 37364544933221, 1937263554933221, 3927263544835231, 391827264534836231, 293827363544836231
Offset: 0

Views

Author

Keywords

Comments

After the 26th term the sequence goes into a cycle of 46 terms.
"Summarize" uses here method C = A244112: in order of decreasing digit value.

Crossrefs

Cf. A036059.
Cf. A244112 (summarizing as used here: by decreasing digit value), A047842 (alternative summarizing method: by increasing digit value), A047843 (another method: don't omit missing digits between smallest and largest one).

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<2, 2*n+1, (p-> parse(cat(seq((c->
         `if`(c=0, [][], [c, 9-i][]))(coeff(p, x, 9-i)), i=0..9))))(
          add(x^i, i=map(x-> convert(x, base, 10)[], [a(n-1),a(n-2)]))))
        end:
    seq(a(n), n=0..20);  # Alois P. Heinz, Jun 18 2022
  • Mathematica
    a[0] = 1; a[1] = 3; a[n_] := a[n] = FromDigits @ Flatten @ Reverse @ Select[ Transpose @ { DigitCount[a[n-1]] + DigitCount[a[n-2]], Append[ Range[9], 0]}, #[[1]] > 0 &];
    Table[a[n], {n, 0, 17}] (* Jean-François Alcover, Dec 30 2017 *)
  • PARI
    {a=[1,3]; for(n=1,50,a=concat(a,A244112(eval(Str(a[n],a[n+1]))))); a} \\ M. F. Hasler, Feb 25 2018

Formula

a(n+1) = A244112(concat(a(n),a(n-1))). - M. F. Hasler, Feb 25 2018

A047843 Describe n: give frequency of each digit, by increasing size; mention also missing digits between the smallest and largest one.

Original entry on oeis.org

10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 1011, 21, 1112, 110213, 11020314, 1102030415, 110203040516, 11020304050617, 1102030405060718, 110203040506070819, 100112, 1112, 22, 1213, 120314, 12030415, 1203040516
Offset: 0

Views

Author

Keywords

Comments

Other methods to describe or summarize n are: A047842 (as here, but ignoring "missing" digits), A244112 (count digits in order of decreasing size, ignoring missing digits). - M. F. Hasler, Feb 25 2018

Examples

			131 contains two 1's, zero 2's and one 3, so a(131) = 210213.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Module[{T, f}, T = Tally[IntegerDigits[n]]; f[_] = 0; Do[f[t[[1]]] = t[[2]], {t, T}]; Table[{f[k], k}, {k, Min@T[[All, 1]], Max@T[[All, 1]]} ] // Flatten // FromDigits];
    a /@ Range[0, 26] (* Jean-François Alcover, Jan 07 2020 *)
  • PARI
    A047843(n,S="")={if(n,for(d=vecmin(n=digits(n)),vecmax(n),S=Str(S,#select(t->t==d,n),d));eval(S),10)} \\ M. F. Hasler, Feb 25 2018

Extensions

More accurate title from M. F. Hasler, Feb 25 2018
Showing 1-9 of 9 results.