cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 171 results. Next

A084034 Numbers which are a product of repeated-digit numbers A010785.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 27, 28, 30, 32, 33, 35, 36, 40, 42, 44, 45, 48, 49, 50, 54, 55, 56, 60, 63, 64, 66, 70, 72, 75, 77, 80, 81, 84, 88, 90, 96, 98, 99, 100, 105, 108, 110, 111, 112, 120, 121, 125, 126, 128
Offset: 1

Views

Author

Amarnath Murthy, May 26 2003

Keywords

Comments

Numbers which can be written as a*b*c*... where a, b, c are numbers whose decimal expansions are repetitions of a single digit.
Superset of A051038. The first numbers in this sequence but not in A051038 are 111, 222, 333, 444, 555. - R. J. Mathar, Sep 17 2008
From David A. Corneth, Aug 03 2017: (Start)
Closed under multiplication.
Multiples of 1-digit primes and numbers of the form (10^n - 1) / 9. (End)

Examples

			99 is a member since 99 = 3*33.
9768 is a member since 9768= 2*22*222.
111*2*33*44 = 322344 is a member.
		

Crossrefs

A002473 gives products of single-digit numbers.

Programs

  • Maple
    isA010786 := proc(n) if nops(convert(convert(n,base,10),set)) = 1 then true; else false ; fi; end: isA084034 := proc(n,a010785) local d ; if n = 1 then RETURN(true) ; fi; for d in ( numtheory[divisors](n) minus{1} ) do if d in a010785 then if isA084034(n/d,a010785) then RETURN(true) ; fi; fi; od: RETURN(false) ; end: nmax := 1000: a010785 := [] : for k from 1 to nmax do if isA010786(k) then a010785 := [op(a010785),k] ; fi; od: for n from 1 to nmax do if isA084034(n,a010785) then printf("%d,",n) ; fi; end: # R. J. Mathar, Sep 17 2008

Extensions

Corrected and extended by David Wasserman, Dec 09 2004
Corrected data, offset changed to 1 by David A. Corneth, Aug 03 2017
Edited by N. J. A. Sloane, Jul 02 2017 and Oct 10 2018

A139819 Complement of repdigit numbers A010785.

Original entry on oeis.org

10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 89
Offset: 1

Views

Author

N. J. A. Sloane, Jun 02 2008

Keywords

Comments

Identical to (base 10) non-palindromic numbers A029742 up to a(83) = 101 which is a term of this sequence but not in A029742. - M. F. Hasler, Sep 08 2015

Crossrefs

Cf. A066484 (subsequence).
Cf. A029742 (non-palindromic in base 10), A016038 (in any base), A050813 (in bases 2..10).

Programs

  • Haskell
    a139819 n = a139819_list !! (n-1)
    a139819_list = filter ((== 0) . a202022) [0..] -- Reinhard Zumkeller, Dec 09 2011
    
  • Maple
    isA139819 := proc(n)
        convert(n,base,10) ;
        convert(%,set) ;
        simplify(nops(%) >1 ) ;
    end proc: # R. J. Mathar, Jan 17 2017
  • PARI
    is_A139819(n)=#Set(digits(n))>1 \\ M. F. Hasler, Sep 08 2015
    
  • Python
    def A139819(n):
        m, k = n, n+9*((l:=len(str(n)))-1)+9*n//(10**l-1)
        while m != k:
            m, k = k, n+9*((l:=len(str(k)))-1)+9*k//(10**l-1)
        return m # Chai Wah Wu, Sep 04 2024

Formula

A202022(a(n)) = 0. - Reinhard Zumkeller, Dec 09 2011

A355698 a(n) is the number of repdigits divisors of n (A010785).

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 4, 3, 3, 2, 5, 1, 3, 3, 4, 1, 5, 1, 4, 3, 4, 1, 6, 2, 2, 3, 4, 1, 5, 1, 4, 4, 2, 3, 6, 1, 2, 2, 5, 1, 5, 1, 6, 4, 2, 1, 6, 2, 3, 2, 3, 1, 5, 4, 5, 2, 2, 1, 6, 1, 2, 4, 4, 2, 8, 1, 3, 2, 4, 1, 7, 1, 2, 3, 3, 4, 4, 1, 5, 3, 2, 1, 6, 2, 2, 2, 8, 1, 6, 2, 3, 2, 2, 2, 6, 1, 3, 6, 4, 1, 4, 1, 4, 4
Offset: 1

Views

Author

Bernard Schott, Jul 14 2022

Keywords

Comments

More than the usual number of terms are displayed in order to show the difference from A087990.
The first 100 terms are the same first 100 terms of A087990, then a(101) = 1 while A087990(101) = 2, because 101 is the smallest palindrome that is not repdigit; the next difference is 121.
Inequalities: 1 <= a(n) <= A087990(n).

Examples

			66 has 8 divisors: {1, 2, 3, 6, 11, 22, 33, 66} that are all repdigits, hence a(66) = 8.
121 has 3 divisors: {1, 11, 121} of which 2 are repdigits: {1, 11}, hence a(121) = 2.
		

Crossrefs

Programs

  • Maple
    isrepdig:= proc(n) nops(convert(convert(n,base,10),set))=1 end proc:
    f:= proc(n) nops(select(isrepdig, numtheory:-divisors(n))) end proc:
    map(f, [$1..200]); # Robert Israel, Aug 07 2024
  • Mathematica
    a[n_] := DivisorSum[n, 1 &, Length[Union[IntegerDigits[#]]] == 1 &]; Array[a, 100] (* Amiram Eldar, Jul 14 2022 *)
  • PARI
    a(n) = my(ret=0,u=1); while(u<=n, ret+=sum(d=1,9, n%(u*d)==0); u=10*u+1); ret; \\ Kevin Ryde, Jul 14 2022
    
  • PARI
    isrep(n) = {1==#Set(digits(n))}; \\ A010785
    a(n) = sumdiv(n, d, isrep(d)); \\ Michel Marcus, Jul 15 2022
  • Python
    from sympy import divisors
    def c(n): return len(set(str(n))) == 1
    def a(n): return sum(1 for d in divisors(n, generator=True) if c(d))
    print([a(n) for n in range(1, 105)]) # Michael S. Branicky, Jul 14 2022
    

Formula

Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = (7129/2520) * A065444 = 3.11446261209177581335... . - Amiram Eldar, Apr 17 2025

A027828 First differences of A010785.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 11, 11, 11, 11, 11, 11, 11, 11, 12, 111, 111, 111, 111, 111, 111, 111, 111, 112, 1111, 1111, 1111, 1111, 1111, 1111, 1111, 1111, 1112, 11111, 11111, 11111, 11111, 11111, 11111, 11111, 11111, 11112, 111111, 111111, 111111
Offset: 0

Views

Author

Jean-Marc MALASOMA (Malasoma(AT)entpe.fr)

Keywords

Crossrefs

Cf. A010785.

Programs

  • Mathematica
    Differences[Union[FromDigits/@Flatten[Table[PadRight[{},i,n],{n,0,9},{i,6}],1]]] (* Harvey P. Dale, Jan 16 2013 *)

Extensions

More terms from James Sellers, May 01 2000

A070840 Repdigits (A010785) ordered by sum of digits (A007953).

Original entry on oeis.org

0, 1, 2, 11, 3, 111, 4, 22, 1111, 5, 11111, 6, 33, 222, 111111, 7, 1111111, 8, 44, 2222, 11111111, 9, 333, 111111111, 55, 22222, 1111111111, 11111111111, 66, 444, 3333, 222222, 111111111111, 1111111111111, 77, 2222222, 11111111111111, 555, 33333
Offset: 1

Views

Author

Amarnath Murthy, May 12 2002

Keywords

Comments

If n has no divisors among 2,3,5 or 7 then the only term with digit sum n is the repunit A002275(n) = 1111... n times.

Crossrefs

Cf. A070841.

Extensions

Edited and extended by Ray Chandler, Feb 10 2009

A070841 Repdigits (A010785), excluding repunits (A002275), ordered by product of digits (A007954).

Original entry on oeis.org

2, 3, 4, 22, 5, 6, 7, 8, 222, 9, 33, 44, 2222, 55, 333, 22222, 66, 77, 88, 444, 222222, 99, 3333, 555, 2222222, 666, 33333, 4444, 22222222, 777, 888, 222222222, 5555, 999, 333333, 44444, 2222222222, 6666, 22222222222, 3333333, 7777, 55555, 8888
Offset: 1

Views

Author

Amarnath Murthy, May 12 2002

Keywords

Crossrefs

Cf. A070840.

Extensions

Edited and extended by Ray Chandler, Feb 10 2009

A178049 The number of iterations of the map x -> x + d(x) to reach a repdigit (cf. A010785), starting at n, where the decimals of d(x) are the first differences of the decimals of x.

Original entry on oeis.org

2, 1, 7, 6, 7, 5, 3, 6, 8, 4, 2, 2, 1, 5, 4, 7, 3, 3, 6, 8, 2, 2, 2, 1, 5, 4, 7, 3, 3, 6, 2, 2, 2, 2, 1, 5, 4, 3, 3, 3, 2, 2, 2, 2, 2, 1, 5, 4, 3, 3, 2, 2, 2, 2, 2, 2, 1, 4, 3, 3, 2, 2, 2, 2, 2, 2, 2, 1, 4, 3, 2, 2, 2, 2, 2, 2, 2, 2, 1, 3, 2, 2, 2, 2, 2, 2, 2
Offset: 10

Views

Author

Michel Lagneau, May 18 2010

Keywords

Comments

Let the recurrence X(k+1) = X(k) + Y(k) with the initial values : X(0) = n, and {x(1), x(2),...,x(p) } is the decimal expansion of n ; Y(0) has the decimal expansion {y(2), y(3),...,y(p)} where y(i) = abs(x(i)- x(i-1)), i = 2,..., p. For n > = 10, a(n) is the number of iterations of Y(k) needed to reach 0.
According to the computations with the Maple program for big numbers, the recurrence converges. Y(k) tends towards zero after a number of finite iterations, and X(k) tends towards a number q with the decimal expansion {p,p, ...,p }.

Examples

			a(11) = 1 because 11 + (1-1) = 11 + 0, and 0 is obtained after the first iteration.
a(12) = 7 because 12 + 1 = 13 -> 13 + 2 = 15 -> 15 + 4= 19 -> 19 + 8 = 27-> 27 + 5 = 32 -> 32 + 1 = 33 -> 33 + 0 = 33 is the last number of the cycle, and 0 is obtained after the 7th iteration.
		

Crossrefs

Cf. A010785.

Programs

  • Maple
    for n from 10 to 200 do:n0:=n:s:=1:for i from 1 to 10^6 while(s<>0) do:x:=convert(n0,base,10):n1:=nops(x):s:=sum(abs(x[j+1]-x[j]),j=1..n1-1):n0:=n0+s:it:=i:od: printf(`%d, `, it):od:

A033618 Number of ways n-th repdigit number, A010785(n), can be expressed as a polygonal number.

Original entry on oeis.org

2, 2, 2, 2, 3, 2, 2, 3, 2, 3, 3, 2, 4, 5, 2, 3, 3, 4, 3, 4, 3, 4, 5, 3, 3, 3, 3, 2, 3, 3, 3, 6, 3, 2, 3, 2, 3, 3, 3, 3, 4, 2, 3, 3, 7, 3, 4, 3, 4, 5, 4, 3, 4, 2, 2, 3, 3, 3, 4, 3, 3, 3, 3, 4, 3, 2, 3, 6, 2, 3, 3
Offset: 2

Views

Author

Keywords

Examples

			The n-th k-sided polygonal number is P(n,k)=n((k-2)n+4-k)/2 (k >= 2, n >= 1). For each repdigit number R>=2, sequence gives number of (n,k) such that P(n,k)=R.
		

A277209 Partial sums of repdigit numbers (A010785).

Original entry on oeis.org

0, 1, 3, 6, 10, 15, 21, 28, 36, 45, 56, 78, 111, 155, 210, 276, 353, 441, 540, 651, 873, 1206, 1650, 2205, 2871, 3648, 4536, 5535, 6646, 8868, 12201, 16645, 22200, 28866, 36643, 45531, 55530, 66641, 88863, 122196, 166640, 222195, 288861, 366638, 455526, 555525, 666636, 888858, 1222191, 1666635, 2222190
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 05 2016

Keywords

Comments

More generally, the ordinary generating function for the partial sums of numbers that are repdigits in base k (for k > 1) is (Sum_{m = 1..(k-1)} m*x^m)/((1 - x)*(1 - x^(k-1))*(1 - k*x^(k-1))).

Examples

			a(0)=0;
a(1)=0+1=1;
a(2)=0+1+2=3;
a(3)=0+1+2+3=6;
...
a(10)=0+1+2+3+4+5+6+7+8+9+11=56;
a(11)=0+1+2+3+4+5+6+7+8+9+11+22=78;
a(12)=0+1+2+3+4+5+6+7+8+9+11+22+33=111, etc.
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[x (1 + 2 x + 3 x^2 + 4 x^3 + 5 x^4 + 6 x^5 + 7 x^6 + 8 x^7 + 9 x^8)/((1 - x) (1 - 10 x^9) (1 - x^9)), {x, 0, 50}], x]

Formula

G.f.: x*(1 + 2*x + 3*x^2 + 4*x^3 + 5*x^4 + 6*x^5 + 7*x^6 + 8*x^7 + 9*x^8)/((1 - x)*(1 - x^9)*(1 - 10*x^9)).
a(n) = A000217(n) for n < 10.
a(n) = A046489(n-1) for n < 19.

A353704 Repdigit numbers (A010785) in A157037.

Original entry on oeis.org

6, 22, 66, 222, 555, 3333, 55555, 66666, 111111, 7777777, 2222222222, 5555555555, 55555555555555555, 2222222222222222222222222, 55555555555555555555555555, 66666666666666666666666666, 66666666666666666666666666666666666, 6666666666666666666666666666666666666666666
Offset: 1

Views

Author

Marius A. Burtea, May 08 2022

Keywords

Comments

Intersection of A010785 and A157037.
No term contains the digits 4, 8 or 9.

Examples

			22 = A010785(11) and 22 = A157037(3), so 22 is a term.
66 = A010785(15) and 22 = A157037(8), so 66 is a term.
		

Crossrefs

Programs

  • Magma
    f:=func;  [n:n in [(k - 9*Floor((k-1)/9))*(10^Floor((k+8)/9) - 1) div 9:k in [1..400]]| IsPrime(Floor(f(n))) ];
    
  • Mathematica
    d[0] = d[1] = 0; d[n_] := n * Plus @@ ((Last[#]/First[#]) & /@ FactorInteger[n]); Select[Sort[Flatten[Outer[Times, Range[1, 9], (10^Range[43] - 1)/9]]], PrimeQ[d[#]] &] (* Amiram Eldar, May 09 2022 *)
  • PARI
    ad(n) = vecsum([n/f[1]*f[2]|f<-factor(n+!n)~]); \\ A003415
    isok(m) = isprime(ad(m)) && (#Set(digits(m)) == 1); \\ Michel Marcus, May 09 2022
    
  • Python
    from itertools import count, islice
    from sympy import isprime, factorint
    def A353704_gen(): # generator of terms
        return filter(lambda n:isprime(sum(n*e//p for p,e in factorint(n).items())), (d*(10**l-1)//9 for l in count(1) for d in (1,2,3,5,6,7)))
    A353704_list = list(islice(A353704_gen(),10)) # Chai Wah Wu, Jun 23 2022
Showing 1-10 of 171 results. Next