A244120 Triangle read by rows: coefficients T(n,k) of a binomial decomposition of n^n as Sum(k=0..n)T(n,k)*binomial(n,k).
1, 0, 1, 0, 2, 0, 0, 3, 6, 0, 0, 4, 32, 12, 0, 0, 5, 120, 180, 20, 0, 0, 6, 384, 1458, 768, 30, 0, 0, 7, 1120, 9072, 12096, 2800, 42, 0, 0, 8, 3072, 48600, 131072, 81000, 9216, 56, 0, 0, 9, 8064, 236196, 1152000, 1440000, 472392, 28224, 72, 0, 0, 10, 20480, 1071630, 8847360, 19531250, 13271040, 2500470, 81920, 90, 0
Offset: 0
Examples
The first rows of the triangle are: 1 0 1 0 2 0 0 3 6 0 0 4 32 12 0 0 5 120 180 20 0
Links
- Stanislav Sykora, Table of n, a(n) for rows 0..100
- S. Sykora, An Abel's Identity and its Corollaries, Stan's Library, Volume V, 2014, DOI 10.3247/SL5Math14.004. See eq.(5), with b=1.
Crossrefs
Programs
-
PARI
seq(nmax,b)={my(v,n,k,irow); v = vector((nmax+1)*(nmax+2)/2);v[1]=1; for(n=1,nmax,irow=1+n*(n+1)/2;v[irow]=0; for(k=1,n,v[irow+k] = n*(n-k*b)^(k-1)*(k*b)^(n-k););); return(v);} a=seq(100,1);
Comments