cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A244145 Number of positive integers k less than n such that the symmetric representation of sigma(k) is contiguous (shares a line border) with the symmetric representation of sigma(n).

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 3, 3, 1, 2, 1, 2, 1, 2, 3, 3, 1, 2, 2, 3, 1, 2, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 2, 1, 2, 1, 4, 1, 2, 2, 3, 1, 2, 1, 2, 1, 3, 1, 3, 1, 2, 2, 2, 3, 2, 1, 2, 1, 2, 1, 4, 1, 2, 3
Offset: 1

Views

Author

Michel Marcus, Jun 21 2014

Keywords

Comments

For more information about the symmetric representation of sigma(n) see A237593 and A237270.

Examples

			For n = 6 the symmetric representation of sigma(6) (the outer one in the figure below) touches those for n = 4 and n = 5, so a(6) = 2.
   _ _ _ _
  |_ _ _  |_
  |_ _ _|   |_
  |_ _  |_ _  |
  |_ _|_  | | |
  |_  | | | | |
  |_|_|_|_|_|_|
   1 2 3 4 5 6
		

Crossrefs

Programs

  • Mathematica
    (* path[n] computing the n-th Dyck path is defined in A237270 *)
    (* canvasNamed[] creates a matrix with the labeled symmetric regions *)
    (* adjacentPos[] computes list of bounding regions *)
    extents[n_] := Map[Transpose[#] + {{1, 0}, {1, 0}}&, Transpose[{path[n-1], Most[Rest[path[n]]]}]]
    squaresPos[n_] := DeleteDuplicates[Flatten[Map[Flatten[Outer[List, First[#], Last[#]], 1]&, Map[Apply[Range, #]&, extents[n], {2}]], 1]]
    squaresNamed[n_] := Map[#->n&, squaresPos[n]]
    canvasNamed[n_] := Module[{canvas = Table[0, {n}, {n}]}, ReplacePart[canvas, Flatten[Map[squaresNamed, Range[n]], 1]]]
    adjacentPos[n_, matrix_] := Drop[DeleteDuplicates[Flatten[Map[{matrix[[Apply[Sequence, # + {-1, 0}]]], matrix[[Apply[Sequence, # + {0, -1}]]]}&, Drop[Drop[squaresPos[n], 1], -1]], 1]], 1]
    a244145[n_] := Module[{c = canvasNamed[n]}, Join[{0, 1, 1}, Map[Length[adjacentPos[#, c]]&, Range[4, n]]]]
    a244145[87] (* computes the first 87 values *)
    (* Hartmut F. W. Hoft, Jul 23 2014 *)

Extensions

a(85) corrected by Hartmut F. W. Hoft, Jul 23 2014