cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A244163 Primes which are the concatenation of three consecutive primes p, q, r while the sum (p + q + r) yields another prime.

Original entry on oeis.org

5711, 111317, 171923, 313741, 414347, 229233239, 389397401, 401409419, 409419421, 449457461, 701709719, 773787797, 787797809, 797809811, 140914231427, 157915831597, 163716571663, 202920392053, 212921312137, 252125312539, 259125932609, 263326472657, 268926932699
Offset: 1

Views

Author

K. D. Bajpai, Jun 21 2014

Keywords

Comments

Subsequence of A030469.
The first five terms of this sequence resemble exactly those of A030469.

Examples

			5711 is in the sequence because the concatenation of [5, 7, 11] = 5711 which is prime. The sum [5 + 7 + 11] = 23 is another prime.
111317 is in the sequence because the concatenation of [11, 13, 17] = 111317 which is prime. The sum [11 + 13 + 17] = 41 is another prime.
		

Crossrefs

Programs

  • Maple
    A244163:= proc() local a,b,c,k,m; a:=ithprime(n); b:=ithprime(n+1); c:=ithprime(n+2); m:=a+b+c; k:=parse(cat(a,b,c)); if isprime(k) and isprime(m) then RETURN (k); fi; end: seq(A244163 (), n=1..500);
  • Mathematica
    prQ[{a_,b_,c_}]:=Module[{p=FromDigits[Flatten[IntegerDigits/@ {a,b,c}]]}, If[ AllTrue[ {p,a+b+c},PrimeQ],p,Nothing]]; prQ/@Partition[ Prime[ Range[ 500]],3,1] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jan 05 2021 *)