cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A242451 Number T(n,k) of compositions of n in which the minimal multiplicity of parts equals k; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 3, 0, 1, 0, 6, 1, 0, 1, 0, 15, 0, 0, 0, 1, 0, 23, 7, 1, 0, 0, 1, 0, 53, 10, 0, 0, 0, 0, 1, 0, 94, 32, 0, 1, 0, 0, 0, 1, 0, 203, 31, 21, 0, 0, 0, 0, 0, 1, 0, 404, 71, 35, 0, 1, 0, 0, 0, 0, 1, 0, 855, 77, 91, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1648, 222, 105, 71, 0, 1, 0, 0, 0, 0, 0, 1
Offset: 0

Views

Author

Alois P. Heinz, May 15 2014

Keywords

Comments

T(0,0) = 1 by convention. T(n,k) counts the compositions of n in which at least one part has multiplicity k and no part has a multiplicity smaller than k.
T(n,n) = T(2n,n) = 1.
T(3n,n) = A244174(n).

Examples

			T(5,1) = 15: [1,1,1,2], [1,1,2,1], [1,2,1,1], [2,1,1,1], [1,2,2], [2,1,2], [2,2,1], [1,1,3], [1,3,1], [3,1,1], [2,3], [3,2], [1,4], [4,1], [5].
T(6,2) = 7: [1,1,2,2], [1,2,1,2], [1,2,2,1], [2,1,1,2], [2,1,2,1], [2,2,1,1], [3,3].
T(6,3) = 1: [2,2,2].
Triangle T(n,k) begins:
  1;
  0,   1;
  0,   1,  1;
  0,   3,  0,  1;
  0,   6,  1,  0, 1;
  0,  15,  0,  0, 0, 1;
  0,  23,  7,  1, 0, 0, 1;
  0,  53, 10,  0, 0, 0, 0, 1;
  0,  94, 32,  0, 1, 0, 0, 0, 1;
  0, 203, 31, 21, 0, 0, 0, 0, 0, 1;
  0, 404, 71, 35, 0, 1, 0, 0, 0, 0, 1;
		

Crossrefs

Row sums give A011782.
Cf. A242447 (the same for maximal multiplicity), A243978 (the same for partitions).

Programs

  • Maple
    b:= proc(n, i, p, k) option remember; `if`(n=0, p!, `if`(i<1, 0,
           b(n, i-1, p, k) +add(b(n-i*j, i-1, p+j, k)/j!,
           j=max(1, k)..floor(n/i))))
        end:
    T:= (n, k)-> b(n$2, 0, k) -`if`(n=0 and k=0, 0, b(n$2, 0, k+1)):
    seq(seq(T(n, k), k=0..n), n=0..14);
  • Mathematica
    b[n_, i_, p_, k_] := b[n, i, p, k] = If[n == 0, p!, If[i < 1, 0, b[n, i - 1, p, k] + Sum[b[n - i*j, i - 1, p + j, k]/j!, {j, Max[1, k], Floor[n/i]}]]]; T[n_, k_] := b[n, n, 0, k] - If[n == 0 && k == 0, 0, b[n, n, 0, k + 1]]; Table[Table[T[n, k], {k, 0, n}], {n, 0, 14}] // Flatten (* Jean-François Alcover, Jan 27 2015, after Alois P. Heinz *)

A244291 Positive numbers primitively represented by the binary quadratic form (1, 6, -3).

Original entry on oeis.org

1, 4, 13, 24, 33, 37, 52, 61, 69, 73, 88, 97, 109, 121, 132, 141, 148, 157, 169, 177, 181, 184, 193, 213, 229, 241, 244, 249, 253, 276, 277, 292, 312, 313, 321, 337, 349, 373, 376, 388, 393, 397, 409, 421, 429, 433, 436, 457, 472, 481, 484, 501, 517, 529, 537
Offset: 1

Views

Author

Peter Luschny, Jun 25 2014

Keywords

Comments

Discriminant = 48.

Crossrefs

Cf. A085018, A244169. A subsequence of A243168.

Programs

  • Mathematica
    Reap[For[n = 1, n < 1000, n++, r = Reduce[x^2 + 6 x y - 3 y^2 == n, {x, y}, Integers]; If[r =!= False, If[AnyTrue[{x, y} /. {ToRules[r /. C[1] -> 0]}, CoprimeQ @@ # &], Sow[n]]]]][[2, 1]] (* Jean-François Alcover, Oct 31 2016 *)
Showing 1-2 of 2 results.