cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A085018 Numbers n such that there is no divisor m of n with mA083752(n) = (n/m)A083752(m).

Original entry on oeis.org

1, 4, 13, 24, 33, 37, 52, 61, 69, 73, 88, 97, 109, 121, 132, 141, 157, 177, 181, 184, 193, 213, 229, 241, 244, 249, 253, 277, 292, 312, 313, 321, 337, 349, 373, 376, 388, 393, 397, 409, 421, 429, 433, 457, 472, 481, 501, 517, 529, 537, 541, 564, 568, 573, 577
Offset: 1

Views

Author

Zak Seidov, Jun 18 2003

Keywords

Comments

Seems to be a subsequence of the positive numbers primitively represented by the binary quadratic form (1, 6, -3) with discriminant 48 (see A244291, A243168). - Peter Luschny, Jun 25 2014

Examples

			A083752(2) = (2/1)*A083752(1), therefore 2 is not in the sequence.
But A083752(4) = 109 and 4*A083752(1) = 1572 and 2*A083752(2) = 1572.
Therefore the equation cannot be solved and 4 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    (* b = A083752 *) b[n_] := b[n] = For[k = n+1, True, k++, If[IntegerQ[Sqrt[(4k+3n)(4n+3k)]], Return[k]]]; Reap[For[n = 1, n < 600, n++, mm = Most @ Divisors[n]; If[NoneTrue[mm, b[n] == (n/#) b[#] &], Print[n]; Sow[n]]]][[2, 1]] (* Jean-François Alcover, Oct 31 2016 *)
  • Sage
    def is_A085018(n):
        for d in divisors(n):
            if d < n:
                if d*A083752(n) == n*A083752(d):
                    return false
        return true
    filter(is_A085018, (1..577)) # Peter Luschny, Jun 25 2014

Extensions

Edited and extended by Stefan Steinerberger, Jul 30 2007
More terms from Peter Luschny, Jun 25 2014

A243168 Nonnegative integers of the form x^2 + 6xy - 3y^2.

Original entry on oeis.org

0, 1, 4, 9, 13, 16, 24, 25, 33, 36, 37, 49, 52, 61, 64, 69, 73, 81, 88, 96, 97, 100, 109, 117, 121, 132, 141, 144, 148, 157, 169, 177, 181, 184, 193, 196, 208, 213, 216, 225, 229, 241, 244, 249, 253, 256, 276, 277, 289, 292, 297, 312, 313, 321, 324, 325, 333, 337, 349, 352, 361, 373, 376, 384, 388, 393, 397, 400, 409, 421, 429, 433, 436, 441, 457, 468, 472
Offset: 1

Views

Author

N. J. A. Sloane, Jun 01 2014

Keywords

Comments

Discriminant 48.
Also nonnegative integers of the form 4x^2 - 3y^2. - Jon E. Schoenfield, Jun 03 2022

Crossrefs

Primes in this sequence = A068228. Cf. A085018, A244291.
Showing 1-2 of 2 results.