A244236 Number of Dyck paths of semilength n having exactly one occurrence of the consecutive pattern UDUD.
0, 0, 1, 1, 5, 14, 46, 150, 495, 1651, 5539, 18692, 63356, 215556, 735717, 2517941, 8637881, 29693938, 102263818, 352762106, 1218634659, 4215351719, 14598518663, 50611799048, 175639493624, 610076726280, 2120837219465, 7378415912617, 25687819032237
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Programs
-
Maple
a:= proc(n) option remember; `if`(n<5, [0$2, 1$2, 5][n+1], ((n-2)*(2*n-7)^2*a(n-1) +(28*n^3-212*n^2+501*n-361)*a(n-2) +(28*n^3-208*n^2+481*n-344)*a(n-3) +(n-3)*(2*n-3)^2*a(n-4) -(n-4)*(2*n-3)*(2*n-5)*a(n-5)) / ((n-1)*(2*n-5)*(2*n-7))) end: seq(a(n), n=0..30);
-
Mathematica
b[x_, y_, t_] := b[x, y, t] = If[y < 0 || y > x, 0, If[x == 0, 1, Expand[ b[x - 1, y + 1, {2, 2, 4, 2}[[t]]] + b[x - 1, y - 1, {1, 3, 1, 3}[[t]]]* If[t == 4, z, 1]]]]; a[n_] := Coefficient[b[2 n, 0, 1], z, 1]; a /@ Range[0, 30] (* Jean-François Alcover, Dec 21 2020, after Alois P. Heinz in A094507 *)
Formula
a(n) ~ c * (1/2+sqrt(2)+sqrt(5+4*sqrt(2))/2)^n / sqrt(n), where c = 0.0543819313385500572292392822783525275532509057751364636784836521... . - Vaclav Kotesovec, Jul 16 2014