cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A244236 Number of Dyck paths of semilength n having exactly one occurrence of the consecutive pattern UDUD.

Original entry on oeis.org

0, 0, 1, 1, 5, 14, 46, 150, 495, 1651, 5539, 18692, 63356, 215556, 735717, 2517941, 8637881, 29693938, 102263818, 352762106, 1218634659, 4215351719, 14598518663, 50611799048, 175639493624, 610076726280, 2120837219465, 7378415912617, 25687819032237
Offset: 0

Views

Author

Alois P. Heinz, Jun 23 2014

Keywords

Crossrefs

Column k=1 of A094507 and column k=10 of A243827.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<5, [0$2, 1$2, 5][n+1],
         ((n-2)*(2*n-7)^2*a(n-1) +(28*n^3-212*n^2+501*n-361)*a(n-2)
          +(28*n^3-208*n^2+481*n-344)*a(n-3) +(n-3)*(2*n-3)^2*a(n-4)
          -(n-4)*(2*n-3)*(2*n-5)*a(n-5)) / ((n-1)*(2*n-5)*(2*n-7)))
        end:
    seq(a(n), n=0..30);
  • Mathematica
    b[x_, y_, t_] := b[x, y, t] = If[y < 0 || y > x, 0, If[x == 0, 1, Expand[ b[x - 1, y + 1, {2, 2, 4, 2}[[t]]] + b[x - 1, y - 1, {1, 3, 1, 3}[[t]]]* If[t == 4, z, 1]]]];
    a[n_] := Coefficient[b[2 n, 0, 1], z, 1];
    a /@ Range[0, 30] (* Jean-François Alcover, Dec 21 2020, after Alois P. Heinz in A094507 *)

Formula

a(n) ~ c * (1/2+sqrt(2)+sqrt(5+4*sqrt(2))/2)^n / sqrt(n), where c = 0.0543819313385500572292392822783525275532509057751364636784836521... . - Vaclav Kotesovec, Jul 16 2014