cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A243827 Number A(n,k) of Dyck paths of semilength n having exactly one occurrence of the consecutive step pattern given by the binary expansion of k, where 1=U=(1,1) and 0=D=(1,-1); square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 3, 1, 0, 0, 0, 0, 1, 4, 6, 1, 0, 0, 0, 0, 1, 2, 11, 10, 1, 0, 0, 0, 0, 0, 4, 6, 26, 15, 1, 0, 0, 0, 0, 0, 1, 11, 16, 57, 21, 1, 0, 0, 0, 0, 0, 1, 4, 26, 45, 120, 28, 1, 0, 0, 0, 0, 1, 1, 5, 15, 57, 126, 247, 36, 1, 0, 0
Offset: 0

Views

Author

Alois P. Heinz, Jun 11 2014

Keywords

Examples

			Square array A(n,k) begins:
  0, 0, 0,  0,   0,    0,   0,    0,    0,    0, ...
  1, 1, 1,  0,   0,    0,   0,    0,    0,    0, ...
  0, 0, 1,  1,   1,    1,   1,    0,    0,    0, ...
  0, 0, 1,  3,   4,    2,   4,    1,    1,    1, ...
  0, 0, 1,  6,  11,    6,  11,    4,    5,    5, ...
  0, 0, 1, 10,  26,   16,  26,   15,   21,   17, ...
  0, 0, 1, 15,  57,   45,  57,   50,   78,   54, ...
  0, 0, 1, 21, 120,  126, 120,  161,  274,  177, ...
  0, 0, 1, 28, 247,  357, 247,  504,  927,  594, ...
  0, 0, 1, 36, 502, 1016, 502, 1554, 3061, 1997, ...
		

Crossrefs

Columns k=2-10 give: A000012(n) for n>0, A000217(n-1) for n>0, A000295(n-1) for n>0, A005717(n-1) for n>1, A000295(n-1) for n>0, A014532(n-2) for n>2, A108863, A244235, A244236.
Main diagonal gives A243770 or column k=1 of A243752.

A094507 Triangle read by rows: T(n,k) is number of Dyck paths of semilength n and having k UDUD's (here U=(1,1), D=(1,-1)).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 7, 5, 1, 1, 19, 14, 7, 1, 1, 53, 46, 22, 9, 1, 1, 153, 150, 82, 31, 11, 1, 1, 453, 495, 299, 127, 41, 13, 1, 1, 1367, 1651, 1087, 507, 181, 52, 15, 1, 1, 4191, 5539, 3967, 1991, 781, 244, 64, 17, 1, 1, 13015, 18692, 14442, 7824, 3271, 1128, 316, 77, 19
Offset: 0

Views

Author

Emeric Deutsch, Jun 05 2004

Keywords

Comments

Column k=0 is A078481.
Column k=1 is A244236.
Row sums are the Catalan numbers (A000108).

Examples

			T(3,0) = 3 because UDUUDD, UUDDUD and UUUDDD are the only Dyck paths of semilength 3 and having no UDUD in them.
Triangle begins:
     1;
     1;
     1,    1;
     3,    1,    1;
     7,    5,    1,    1;
    19,   14,    7,    1,   1;
    53,   46,   22,    9,   1,   1;
   153,  150,   82,   31,  11,   1,  1;
   453,  495,  299,  127,  41,  13,  1,  1;
  1367, 1651, 1087,  507, 181,  52, 15,  1, 1;
  4191, 5539, 3967, 1991, 781, 244, 64, 17, 1, 1;
		

Crossrefs

Cf. A078481, A000108, A102405 (the same for DUDU), A243752, A243753, A244236.
T(2n,n) gives A304361.

Programs

  • Maple
    b:= proc(x, y, t) option remember; `if`(y<0 or y>x, 0,
         `if`(x=0, 1, expand(b(x-1, y+1, [2, 2, 4, 2][t])
          +b(x-1, y-1, [1, 3, 1, 3][t])*`if`(t=4, z, 1))))
        end:
    T:= n-> (p-> seq(coeff(p, z, i), i=0..degree(p)))(b(2*n, 0, 1)):
    seq(T(n), n=0..15);  # Alois P. Heinz, Jun 02 2014
  • Mathematica
    b[x_, y_, t_] := b[x, y, t] = If[y<0 || y>x, 0, If[x == 0, 1, Expand[b[x-1, y+1, {2, 2, 4, 2}[[t]]] + b[x-1, y-1, {1, 3, 1, 3}[[t]]]*If[t == 4, z, 1]]]]; T[n_] := Function[{p}, Table[Coefficient[p, z, i], {i, 0, Exponent[p, z]}]][b[2*n, 0, 1] ]; Table[T[n], {n, 0, 15}] // Flatten (* Jean-François Alcover, Apr 29 2015, after Alois P. Heinz *)

Formula

G.f.: G=G(t, z) satisfies the equation z(1+z-tz)G^2-(1+z+z^2-tz-tz^2)G+1+z-tz=0.
Showing 1-2 of 2 results.