A243752
Number T(n,k) of Dyck paths of semilength n having exactly k (possibly overlapping) occurrences of the consecutive step pattern given by the binary expansion of n, where 1=U=(1,1) and 0=D=(1,-1); triangle T(n,k), n>=0, read by rows.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 1, 3, 1, 1, 11, 2, 9, 16, 12, 4, 1, 1, 57, 69, 5, 127, 161, 98, 35, 7, 1, 323, 927, 180, 1515, 1997, 1056, 280, 14, 4191, 5539, 3967, 1991, 781, 244, 64, 17, 1, 1, 10455, 25638, 18357, 4115, 220, 1, 20705, 68850, 77685, 34840, 5685, 246, 1
Offset: 0
Triangle T(n,k) begins:
: n\k : 0 1 2 3 4 5 ...
+-----+----------------------------------------------------------
: 0 : 1; [row 0 of A131427]
: 1 : 0, 1; [row 1 of A131427]
: 2 : 0, 1, 1; [row 2 of A090181]
: 3 : 1, 3, 1; [row 3 of A001263]
: 4 : 1, 11, 2; [row 4 of A091156]
: 5 : 9, 16, 12, 4, 1; [row 5 of A091869]
: 6 : 1, 57, 69, 5; [row 6 of A091156]
: 7 : 127, 161, 98, 35, 7, 1; [row 7 of A092107]
: 8 : 323, 927, 180; [row 8 of A091958]
: 9 : 1515, 1997, 1056, 280, 14; [row 9 of A135306]
: 10 : 4191, 5539, 3967, 1991, 781, 244, ... [row 10 of A094507]
Columns k=0-10 give:
A243754,
A243770,
A243771,
A243772,
A243773,
A243774,
A243775,
A243776,
A243777,
A243778,
A243779, or main diagonals of
A243753,
A243827,
A243828,
A243829,
A243830,
A243831,
A243832,
A243833,
A243834,
A243835,
A243836.
A078481
Expansion of (1 - x - x^2 - sqrt(1 - 2*x - 5*x^2 - 2*x^3 + x^4)) / (2*x + 2*x^2).
Original entry on oeis.org
0, 1, 1, 3, 7, 19, 53, 153, 453, 1367, 4191, 13015, 40857, 129441, 413337, 1328971, 4298727, 13978971, 45673981, 149867513, 493638797, 1631616239, 5410015615, 17990076527, 59981630321, 200476419713, 671564145137, 2254338511507, 7582179238151, 25547868961315
Offset: 0
x + x^2 + 3*x^3 + 7*x^4 + 19*x^5 + 53*x^6 + 153*x^7 + 453*x^8 + 1367*x^9 + ...
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Andrei Asinowski, Axel Bacher, Cyril Banderier, and Bernhard Gittenberger, Analytic Combinatorics of Lattice Paths with Forbidden Patterns: Enumerative Aspects, in International Conference on Language and Automata Theory and Applications, S. Klein, C. Martín-Vide, D. Shapira (eds), Springer, Cham, pp 195-206, 2018.
- Andrei Asinowski, Axel Bacher, Cyril Banderier, and Bernhard Gittenberger, Analytic combinatorics of lattice paths with forbidden patterns, the vectorial kernel method, and generating functions for pushdown automata, Laboratoire d'Informatique de Paris Nord (LIPN 2019).
- M. D. Atkinson and T. Stitt, Restricted permutations and the wreath product, Preprint, 2002.
- M. D. Atkinson and T. Stitt, Restricted permutations and the wreath product, Discrete Math., 259 (2002), 19-36.
- J.-L. Baril, Avoiding patterns in irreducible permutations, Discrete Mathematics and Theoretical Computer Science, Vol 17, No 3 (2016). See Table 4.
- Paul Barry, On Motzkin-Schröder Paths, Riordan Arrays, and Somos-4 Sequences, J. Int. Seq. (2023) Vol. 26, Art. 23.4.7.
- Toufik Mansour, Statistics on Dyck Paths, Journal of Integer Sequences, Vol. 9 (2006), Article 06.1.5.
- A. Sapounakis, I. Tasoulas and P. Tsikouras, Counting strings in Dyck paths, Discrete Math., 307 (2007), 2909-2924.
- Murray Tannock, Equivalence classes of mesh patterns with a dominating pattern, MSc Thesis, Reykjavik Univ., May 2016.
-
CoefficientList[Series[(1 - x - x^2 - (1 - 2*x - 5*x^2 - 2*x^3 + x^4)^(1/2)) / (2*x + 2*x^2), {x, 0, 20}], x] (* Vaclav Kotesovec, Jan 27 2015 *)
CoefficientList[Series[(1 - x - x^2 - Sqrt[1 - 2 x - 5 x^2 - 2 x^3 + x^4]) / (2 x + 2 x^2), {x, 0, 33}], x] (* Vincenzo Librandi, May 27 2016 *)
-
a(n):=if n=0 then 0 else sum(((sum(binomial(k+1,n-k-i)*binomial(k+i,k),i,0,n-k))*binomial(n-k-2,k))/(k+1),k,0,n); /* Vladimir Kruchinin, Nov 22 2014 */
-
{a(n) = if( n<1, 0, polcoeff( -1 + 2*(1 + x) / (1 + x + x^2 + sqrt((1 - x + x^2)^2 - 8*x^2 + x*O(x^n))), n))} /* Michael Somos, Sep 08 2005 */
Replaced definition with g.f. given by Atkinson and Still (2002). -
N. J. A. Sloane, May 24 2016
A102405
Triangle read by rows: T(n,k) is number of Dyck paths of semilength n having k ascents of length 1 that start at an odd level.
Original entry on oeis.org
1, 1, 2, 4, 1, 10, 3, 1, 26, 12, 3, 1, 72, 41, 15, 3, 1, 206, 143, 58, 18, 3, 1, 606, 492, 231, 76, 21, 3, 1, 1820, 1693, 891, 335, 95, 24, 3, 1, 5558, 5823, 3403, 1411, 455, 115, 27, 3, 1, 17206, 20040, 12870, 5848, 2061, 591, 136, 30, 3, 1, 53872, 69033, 48318, 23858, 9143, 2850, 743, 158, 33, 3, 1
Offset: 0
T(4,1) = 3 because we have UDUUD(U)DD, UUD(U)DDUD and UUUDD(U)DD, where U=(1,1), D=(1,-1) and the ascents of length 1 that start at an odd level are shown between parentheses.
Triangle starts:
00 : 1;
01 : 1;
02 : 2;
03 : 4, 1;
04 : 10, 3, 1;
05 : 26, 12, 3, 1;
06 : 72, 41, 15, 3, 1;
07 : 206, 143, 58, 18, 3, 1;
08 : 606, 492, 231, 76, 21, 3, 1;
09 : 1820, 1693, 891, 335, 95, 24, 3, 1;
10 : 5558, 5823, 3403, 1411, 455, 115, 27, 3, 1;
-
b:= proc(x, y, t) option remember; `if`(y<0 or y>x, 0,
`if`(x=0, 1, expand(b(x-1, y-1, [2, 2, 4, 2][t])
+b(x-1, y+1, [1, 3, 1, 3][t])*`if`(t=4, z, 1))))
end:
T:= n-> (p-> seq(coeff(p, z, i), i=0..degree(p)))(b(2*n, 0, 1)):
seq(T(n), n=0..15); # Alois P. Heinz, Jun 02 2014
-
b[x_, y_, t_] := b[x, y, t] = If[y<0 || y>x, 0, If[x == 0, 1, Expand[b[x-1, y-1, {2, 2, 4, 2}[[t]]] + b[x-1, y+1, {1, 3, 1, 3}[[t]]]*If[t == 4, z, 1]]]]; T[n_] := Function[{p}, Table[Coefficient[p, z, i], {i, 0, Exponent[p, z]}]][b[2*n, 0, 1]]; Table[T[n], {n, 0, 15}] // Flatten (* Jean-François Alcover, May 20 2015, after Alois P. Heinz *)
A244236
Number of Dyck paths of semilength n having exactly one occurrence of the consecutive pattern UDUD.
Original entry on oeis.org
0, 0, 1, 1, 5, 14, 46, 150, 495, 1651, 5539, 18692, 63356, 215556, 735717, 2517941, 8637881, 29693938, 102263818, 352762106, 1218634659, 4215351719, 14598518663, 50611799048, 175639493624, 610076726280, 2120837219465, 7378415912617, 25687819032237
Offset: 0
-
a:= proc(n) option remember; `if`(n<5, [0$2, 1$2, 5][n+1],
((n-2)*(2*n-7)^2*a(n-1) +(28*n^3-212*n^2+501*n-361)*a(n-2)
+(28*n^3-208*n^2+481*n-344)*a(n-3) +(n-3)*(2*n-3)^2*a(n-4)
-(n-4)*(2*n-3)*(2*n-5)*a(n-5)) / ((n-1)*(2*n-5)*(2*n-7)))
end:
seq(a(n), n=0..30);
-
b[x_, y_, t_] := b[x, y, t] = If[y < 0 || y > x, 0, If[x == 0, 1, Expand[ b[x - 1, y + 1, {2, 2, 4, 2}[[t]]] + b[x - 1, y - 1, {1, 3, 1, 3}[[t]]]* If[t == 4, z, 1]]]];
a[n_] := Coefficient[b[2 n, 0, 1], z, 1];
a /@ Range[0, 30] (* Jean-François Alcover, Dec 21 2020, after Alois P. Heinz in A094507 *)
A304361
Number of Dyck paths of semilength 2n having exactly n (possibly overlapping) occurrences of the consecutive pattern UDUD, where U=(1,1) and D=(1,-1).
Original entry on oeis.org
1, 1, 1, 9, 41, 244, 1555, 10037, 68599, 476981, 3399518, 24652718, 181411439, 1352123760, 10185964435, 77458698781, 593871350009, 4586247704944, 35646681303447, 278665636846853, 2189789189667782, 17288684906561300, 137081212514315262, 1091163063187762414
Offset: 0
-
b:= proc(x, y, t) option remember; `if`(y<0 or y>x, 0,
`if`(x=0, 1, expand(b(x-1, y+1, [2, 2, 4, 2][t])
+b(x-1, y-1, [1, 3, 1, 3][t])*`if`(t=4, z, 1))))
end:
a:= n-> coeff(b(4*n, 0, 1), z, n):
seq(a(n), n=0..35);
-
b[x_, y_, t_] := b[x, y, t] = If[y < 0 || y > x, 0, If[x == 0, 1, Expand[ b[x - 1, y + 1, {2, 2, 4, 2}[[t]]] + b[x - 1, y - 1, {1, 3, 1, 3}[[t]]]*If[t == 4, z, 1]]]];
a[n_] := Coefficient[b[4*n, 0, 1], z, n];
Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Jun 02 2018, from Maple *)
Showing 1-5 of 5 results.
Comments