A243753
Number A(n,k) of Dyck paths of semilength n avoiding the consecutive step pattern given by the binary expansion of k, where 1=U=(1,1) and 0=D=(1,-1); square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 2, 1, 1, 0, 0, 0, 1, 1, 2, 1, 4, 1, 1, 0, 0, 0, 1, 1, 2, 4, 1, 9, 1, 1, 0, 0, 0, 1, 1, 2, 4, 9, 1, 21, 1, 1, 0, 0, 0, 1, 1, 1, 4, 9, 21, 1, 51, 1, 1, 0, 0, 0
Offset: 0
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
0, 0, 0, 1, 1, 1, 1, 1, 1, 1, ...
0, 0, 0, 1, 1, 1, 1, 2, 2, 2, ...
0, 0, 0, 1, 1, 2, 1, 4, 4, 4, ...
0, 0, 0, 1, 1, 4, 1, 9, 9, 9, ...
0, 0, 0, 1, 1, 9, 1, 21, 21, 23, ...
0, 0, 0, 1, 1, 21, 1, 51, 51, 63, ...
0, 0, 0, 1, 1, 51, 1, 127, 127, 178, ...
0, 0, 0, 1, 1, 127, 1, 323, 323, 514, ...
0, 0, 0, 1, 1, 323, 1, 835, 835, 1515, ...
Columns give: 0, 1, 2:
A000007, 3, 4, 6:
A000012, 5:
A001006(n-1) for n>0, 7, 8, 14:
A001006, 9:
A135307, 10:
A078481 for n>0, 11, 13:
A105633(n-1) for n>0, 12:
A082582, 15, 16:
A036765, 19, 27:
A114465, 20, 24, 26:
A157003, 21:
A247333, 25:
A187256(n-1) for n>0.
Cf.
A242450,
A243827,
A243828,
A243829,
A243830,
A243831,
A243832,
A243833,
A243834,
A243835,
A243836.
-
A:= proc(n, k) option remember; local b, m, r, h;
if k<2 then return `if`(n=0, 1, 0) fi;
m:= iquo(k, 2, 'r'); h:= 2^ilog2(k); b:=
proc(x, y, t) option remember; `if`(y<0 or y>x, 0, `if`(x=0, 1,
`if`(t=m and r=1, 0, b(x-1, y+1, irem(2*t+1, h)))+
`if`(t=m and r=0, 0, b(x-1, y-1, irem(2*t, h)))))
end; forget(b);
b(2*n, 0, 0)
end:
seq(seq(A(n, d-n), n=0..d), d=0..14);
-
A[n_, k_] := A[n, k] = Module[{b, m, r, h}, If[k<2, Return[If[n == 0, 1, 0]]]; {m, r} = QuotientRemainder[k, 2]; h = 2^Floor[Log[2, k]]; b[x_, y_, t_] := b[x, y, t] = If[y<0 || y>x, 0, If[x == 0, 1, If[t == m && r == 1, 0, b[x-1, y+1, Mod[2*t+1, h]]] + If[t == m && r == 0, 0, b[x-1, y-1, Mod[2*t, h]]]]]; b[2*n, 0, 0]]; Table[ Table[A[n, d-n], {n, 0, d}], {d, 0, 14}] // Flatten (* Jean-François Alcover, Jan 27 2015, after Alois P. Heinz *)
A094507
Triangle read by rows: T(n,k) is number of Dyck paths of semilength n and having k UDUD's (here U=(1,1), D=(1,-1)).
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 7, 5, 1, 1, 19, 14, 7, 1, 1, 53, 46, 22, 9, 1, 1, 153, 150, 82, 31, 11, 1, 1, 453, 495, 299, 127, 41, 13, 1, 1, 1367, 1651, 1087, 507, 181, 52, 15, 1, 1, 4191, 5539, 3967, 1991, 781, 244, 64, 17, 1, 1, 13015, 18692, 14442, 7824, 3271, 1128, 316, 77, 19
Offset: 0
T(3,0) = 3 because UDUUDD, UUDDUD and UUUDDD are the only Dyck paths of semilength 3 and having no UDUD in them.
Triangle begins:
1;
1;
1, 1;
3, 1, 1;
7, 5, 1, 1;
19, 14, 7, 1, 1;
53, 46, 22, 9, 1, 1;
153, 150, 82, 31, 11, 1, 1;
453, 495, 299, 127, 41, 13, 1, 1;
1367, 1651, 1087, 507, 181, 52, 15, 1, 1;
4191, 5539, 3967, 1991, 781, 244, 64, 17, 1, 1;
-
b:= proc(x, y, t) option remember; `if`(y<0 or y>x, 0,
`if`(x=0, 1, expand(b(x-1, y+1, [2, 2, 4, 2][t])
+b(x-1, y-1, [1, 3, 1, 3][t])*`if`(t=4, z, 1))))
end:
T:= n-> (p-> seq(coeff(p, z, i), i=0..degree(p)))(b(2*n, 0, 1)):
seq(T(n), n=0..15); # Alois P. Heinz, Jun 02 2014
-
b[x_, y_, t_] := b[x, y, t] = If[y<0 || y>x, 0, If[x == 0, 1, Expand[b[x-1, y+1, {2, 2, 4, 2}[[t]]] + b[x-1, y-1, {1, 3, 1, 3}[[t]]]*If[t == 4, z, 1]]]]; T[n_] := Function[{p}, Table[Coefficient[p, z, i], {i, 0, Exponent[p, z]}]][b[2*n, 0, 1] ]; Table[T[n], {n, 0, 15}] // Flatten (* Jean-François Alcover, Apr 29 2015, after Alois P. Heinz *)
A384685
Triangle read by rows: T(n,k) is the number of rooted ordered trees with node weights summing to n, where the root has weight 0, all internal nodes have weight 1, and leaf nodes have weights in {1,...,k}.
Original entry on oeis.org
1, 0, 1, 0, 2, 3, 0, 5, 8, 9, 0, 14, 25, 28, 29, 0, 42, 83, 95, 98, 99, 0, 132, 289, 337, 349, 352, 353, 0, 429, 1041, 1236, 1285, 1297, 1300, 1301, 0, 1430, 3847, 4652, 4854, 4903, 4915, 4918, 4919, 0, 4862, 14504, 17865, 18709, 18912, 18961, 18973, 18976, 18977
Offset: 0
Triangle begins:
k=0 1 2 3 4 5 6 7 8
n=0 [1]
n=1 [0, 1]
n=2 [0, 2, 3]
n=3 [0, 5, 8, 9]
n=4 [0, 14, 25, 28, 29]
n=5 [0, 42, 83, 95, 98, 99]
n=6 [0, 132, 289, 337, 349, 352, 353]
n=7 [0, 429, 1041, 1236, 1285, 1297, 1300, 1301]
n=8 [0, 1430, 3847, 4652, 4854, 4903, 4915, 4918, 4919]
...
T(2,2) = 3 counts:
o o o
| | / \
(2) (1) (1) (1)
|
(1)
-
b(k) = {(x^2-x^(k+1))/(1-x)}
P(N,k) = {my(x='x+O('x^N)); Vec((1-b(k)-sqrt((b(k)-1)^2-4*x))/(2*x))}
T(max_row) = { my( N = max_row+1, v = vector(N, i, if(i==1,1,0))~); for(k=1,N, v=matconcat([v,P(N+1,k)~])); vector(N,n, vector(n,k,v[n,k]))}
A120060
Triangle read by rows: T(n,k) is the number of Dyck n-paths (A000108) whose longest sawtooth has size k.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 3, 1, 1, 0, 7, 5, 1, 1, 0, 19, 16, 5, 1, 1, 0, 53, 54, 18, 5, 1, 1, 0, 153, 187, 64, 18, 5, 1, 1, 0, 453, 653, 233, 66, 18, 5, 1, 1, 0, 1367, 2302, 859, 243, 66, 18, 5, 1, 1, 0, 4191, 8174, 3189, 906, 245, 66, 18, 5, 1, 1
Offset: 0
Table begins
\ k..0....1....2....3....4....5....6....7
n
0 |..1
1 |..0....1
2 |..0....1....1
3 |..0....3....1....1
4 |..0....7....5....1....1
5 |..0...19...16....5....1....1
6 |..0...53...54...18....5....1....1
7 |..0..153..187...64...18....5....1....1
a(3,1)=3 because the Dyck 3-paths whose longest sawtooth has size 1 are
UUUDDD, UUDDUD, UDUUDD.
-
Clear[a,b,c] (* a[n,k] is the number of Dyck n-paths whose longest sawtooth has size <=k, b[n,k] is the number of Dyck n-paths that start UU whose longest sawtooth has size <=k, c[n,k] is the number of Dyck n-paths that start UD whose longest sawtooth has size <=k *) catalanNumber[n_] := 1/(n+1)Binomial[2n,n] a[0,k_]/;k>=0 := 1; a[1,k_]/;k>=1 := 1; a[n_,0]/;n>=1 := 0; a[n_,k_]/;k<0 := 0; b[1,k_]/;k>=0 := 0; c[1,k_]/;k>=1 := 1; b[n_,k_] := a[n,k] - c[n,k] c[n_,k_]/;1<=k<=n-1 := c[n,k] = Sum[b[n-j,k],{j,k}] c[n_,k_]/;k>=n>=1 := catalanNumber[n-1]; a[n_,k_]/;k>=n>=0 := catalanNumber[n]; a[n_,k_]/;k==n-1 := catalanNumber[n]-1; a[n_,k_]/;1<=k<=n-2 && n>=3 := a[n,k] = Sum[b[n-j,k],{j,k}] + Sum[a[j-1,k]a[n-j,k],{j,2,n}] Table[a[n,k]-a[n,k-1],{n,0,8},{k,0,n}]
A218538
Triangle read by rows: T(n,k) is the number of permutations of{1,2,...,n} avoiding [x,x+1] having genus k (see first comment for definition of genus).
Original entry on oeis.org
1, 1, 0, 3, 0, 0, 7, 4, 0, 0, 19, 29, 5, 0, 0, 53, 180, 76, 0, 0, 0, 153, 1004, 901, 61, 0, 0, 0, 453, 5035, 8884, 2315, 0, 0, 0, 0, 1367, 23653, 74177, 46285, 2847, 0, 0, 0, 0, 4191, 106414, 546626, 667640, 143586, 0, 0, 0, 0, 0, 13015, 463740, 3658723, 7777935, 3896494, 209624, 0
Offset: 1
Triangle starts:
[ 1] 1,
[ 2] 1, 0,
[ 3] 3, 0, 0,
[ 4] 7, 4, 0, 0,
[ 5] 19, 29, 5, 0, 0,
[ 6] 53, 180, 76, 0, 0, 0,
[ 7] 153, 1004, 901, 61, 0, 0, 0,
[ 8] 453, 5035, 8884, 2315, 0, 0, 0, 0,
[ 9] 1367, 23653, 74177, 46285, 2847, 0, 0, 0, 0,
[10] 4191, 106414, 546626, 667640, 143586, 0, 0, 0, 0, 0,
[11] 13015, 463740, 3658723, 7777935, 3896494, 209624, 0, 0, 0, 0, 0,
[12] 40857, 1972339, 22712736, 77535694, 74678363, 13959422, 0, 0, ...,
[13] 129441, 8228981, 132804891, 685673340, 1131199122, 485204757, 23767241, 0, ...,
...
Cf.
A177267 (genus of all permutations).
Cf.
A178514 (genus of derangements),
A178515 (genus of involutions),
A178516 (genus of up-down permutations),
A178517 (genus of non-derangement permutations),
A178518 (permutations of [n] having genus 0 and p(1)=k),
A185209 (genus of connected permutations).
A177896
A binomial conjugate of the Narayana numbers.
Original entry on oeis.org
1, 1, 1, 2, 3, 1, 4, 9, 6, 1, 9, 26, 26, 10, 1, 21, 75, 100, 60, 15, 1, 51, 216, 360, 295, 120, 21, 1, 127, 623, 1246, 1295, 735, 217, 28, 1, 323, 1800, 4200, 5292, 3864, 1624, 364, 36, 1, 835, 5211, 13896, 20580, 18396, 10080, 3276, 576, 45, 1, 2188, 15115, 45345, 77190, 81690, 55314, 23730, 6150, 870, 55, 1
Offset: 0
Triangle begins
1,
1, 1,
2, 3, 1,
4, 9, 6, 1,
9, 26, 26, 10, 1,
21, 75, 100, 60, 15, 1,
51, 216, 360, 295, 120, 21, 1,
127, 623, 1246, 1295, 735, 217, 28, 1,
323, 1800, 4200, 5292, 3864, 1624, 364, 36, 1
Showing 1-6 of 6 results.
Comments