cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A244240 Number of partitions of n into 4 parts such that every i-th smallest part (counted with multiplicity) is different from i.

Original entry on oeis.org

1, 4, 7, 11, 15, 19, 25, 30, 37, 44, 53, 61, 72, 82, 95, 107, 122, 136, 154, 170, 190, 209, 232, 253, 279, 303, 332, 359, 391, 421, 457, 490, 529, 566, 609, 649, 696, 740, 791, 839, 894, 946, 1006, 1062, 1126, 1187, 1256, 1321, 1395, 1465, 1544, 1619, 1703
Offset: 14

Views

Author

Alois P. Heinz, Jun 23 2014

Keywords

Crossrefs

Column k=4 of A238406.

Programs

  • PARI
    p_q(k) = {prod(j=1, k, 1-q^j); }
    GB_q(N, M)= {p_q(N+M)/(p_q(M)*p_q(N)); }
    A_q(N) = {my(q='q+O('q^N), g=sum(i=3,N, q^(8+i) * (GB_q(3,i) - q^2 - q^3 - sum(j=0,i, q^j))));
    Vec(g)}
    A_q(70) \\ John Tyler Rascoe, Apr 23 2024

Formula

Conjectures from Chai Wah Wu, Apr 18 2024: (Start)
a(n) = a(n-1) + a(n-2) - 2*a(n-5) + a(n-8) + a(n-9) - a(n-10) for n > 26.
G.f.: x^14*(-x^4 + x + 1)*(x^8 - x^5 - 2*x^4 + 2*x + 1)/((x - 1)^4*(x + 1)^2*(x^2 + 1)*(x^2 + x + 1)). (End)
G.f.: Sum_{i>2} q^(8+i) * ( q_binomial(3,i) - q^2 - q^3 - Sum_{j=0..i} (q^j) ). - John Tyler Rascoe, Apr 23 2024