A244240 Number of partitions of n into 4 parts such that every i-th smallest part (counted with multiplicity) is different from i.
1, 4, 7, 11, 15, 19, 25, 30, 37, 44, 53, 61, 72, 82, 95, 107, 122, 136, 154, 170, 190, 209, 232, 253, 279, 303, 332, 359, 391, 421, 457, 490, 529, 566, 609, 649, 696, 740, 791, 839, 894, 946, 1006, 1062, 1126, 1187, 1256, 1321, 1395, 1465, 1544, 1619, 1703
Offset: 14
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 14..1000
- N. Guru Sharan and Armin Straub, Partitions with Durfee triangles of fixed size, arXiv:2507.19047 [math.CO], 2025. See p. 5.
Crossrefs
Column k=4 of A238406.
Programs
-
PARI
p_q(k) = {prod(j=1, k, 1-q^j); } GB_q(N, M)= {p_q(N+M)/(p_q(M)*p_q(N)); } A_q(N) = {my(q='q+O('q^N), g=sum(i=3,N, q^(8+i) * (GB_q(3,i) - q^2 - q^3 - sum(j=0,i, q^j)))); Vec(g)} A_q(70) \\ John Tyler Rascoe, Apr 23 2024
Formula
Conjectures from Chai Wah Wu, Apr 18 2024: (Start)
a(n) = a(n-1) + a(n-2) - 2*a(n-5) + a(n-8) + a(n-9) - a(n-10) for n > 26.
G.f.: x^14*(-x^4 + x + 1)*(x^8 - x^5 - 2*x^4 + 2*x + 1)/((x - 1)^4*(x + 1)^2*(x^2 + 1)*(x^2 + x + 1)). (End)
G.f.: Sum_{i>2} q^(8+i) * ( q_binomial(3,i) - q^2 - q^3 - Sum_{j=0..i} (q^j) ). - John Tyler Rascoe, Apr 23 2024