cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A244324 Numbers n such that floor(antisigma(n) / n) = antisigma(n) mod n.

Original entry on oeis.org

1, 2, 15, 20, 104, 207, 464, 650, 1023, 1952, 2975, 19359, 130304, 147455, 522752, 1207359, 5017599, 8382464
Offset: 1

Views

Author

Jaroslav Krizek, Jun 25 2014

Keywords

Comments

Antisigma(n) = A024816(n) = sum of numbers less than n which do not divide n.
Also numbers n such that there is some number k > 0 with property: antisigma(n) = k*(n+1). Corresponding values of numbers k: 0, 0, 6, 8, 50, 102, 230, 323, 510, 974, 1486, 9678, …
Numbers n such that A244325(n) = A229110(n).

Examples

			Antisigma(19359) = 187366080 = 9678*19359 + 9678.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..1000000] | u eq 0 where u is (Floor((((n*(n+1)) div 2  - SumOfDivisors(n)) div n))) - (((((n*(n+1)) div 2)-SumOfDivisors(n)) mod (n)))]
    
  • PARI
    isok(n) = my(as = n*(n+1)/2 - sigma(n)); (as\n == as % n); \\ Michel Marcus, Jun 26 2014

Extensions

a(16)-a(18) from Michel Marcus, Jun 26 2014

A244326 Numbers k such that floor(antisigma(k)/k) < floor(antisigma(k - 1)/(k - 1)).

Original entry on oeis.org

36, 48, 60, 72, 84, 90, 96, 108, 120, 132, 144, 156, 168, 180, 192, 210, 216, 240, 252, 264, 270, 280, 288, 300, 312, 324, 330, 336, 360, 378, 384, 390, 396, 408, 420, 432, 450, 456, 468, 480, 504, 510, 528, 540, 552, 560, 570, 576, 588, 600, 612, 624, 630, 648
Offset: 1

Views

Author

Jaroslav Krizek, Jun 25 2014

Keywords

Comments

Antisigma(n) = A024816(n) = the sum of the non-divisors of n that are between 1 and n.
Numbers from A166069 (multiply perfect numbers k such that sigma(k)/k > 2) are members of this sequence.

Crossrefs

Programs

  • Magma
    [k: k in [2..10000] | Floor((((k*(k+1))div 2  - SumOfDivisors(k)) div k)) lt Floor((((k*(k-1))div 2  - SumOfDivisors(k-1)) div (k-1)))];
  • Mathematica
    With[{as=Table[Floor[Total[Complement[Range[2,n],Divisors[n]]/n]],{n,1000}]},Flatten[Position[Partition[as,2,1],?(First[#]>Last[#]&),{1},Heads->False]]]+1 (* _Harvey P. Dale, Sep 10 2014 *)
Showing 1-2 of 2 results.