A244328 a(1) = a(2) = 0; for n >= 3: a(n) = floor((n*(n+1)/2) / antisigma(n)) = floor(A000217(n) / A024816(n)).
0, 0, 3, 3, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1
Examples
For n = 10; a(10) = floor(A000217(10) / A024816(10)) = floor(55 / 37) = 1.
Links
- Index entries for linear recurrences with constant coefficients, signature (1).
Programs
-
Magma
[Floor((n*(n+1)div 2) div ((n*(n+1)div 2)-SumOfDivisors(n))): n in [3..1000]];
-
Mathematica
PadRight[{0, 0, 3, 3, 1, 2}, 100, 1] (* Paolo Xausa, Sep 01 2024 *)
-
PARI
if(n>6,1,[0, 0, 3, 3, 1, 2][n]) \\ Charles R Greathouse IV, May 15 2015
Formula
a(n) = 1 for n >= 7.
G.f.: x^3*(3 - 2*x^2 + x^3 - x^4)/(1 - x). - Elmo R. Oliveira, Aug 03 2024
E.g.f.: exp(x) - x - 1 + x^2*(x^4 + 60*x^2 + 240*x - 360)/720. - Stefano Spezia, Sep 02 2024
Comments