A265901 Square array read by descending antidiagonals: A(n,1) = A188163(n), and for k > 1, A(n,k) = A087686(1+A(n,k-1)).
1, 2, 3, 4, 7, 5, 8, 15, 12, 6, 16, 31, 27, 14, 9, 32, 63, 58, 30, 21, 10, 64, 127, 121, 62, 48, 24, 11, 128, 255, 248, 126, 106, 54, 26, 13, 256, 511, 503, 254, 227, 116, 57, 29, 17, 512, 1023, 1014, 510, 475, 242, 120, 61, 38, 18, 1024, 2047, 2037, 1022, 978, 496, 247, 125, 86, 42, 19, 2048, 4095, 4084, 2046, 1992, 1006, 502, 253, 192, 96, 45, 20
Offset: 1
Examples
The top left corner of the array: 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, ... 3, 7, 15, 31, 63, 127, 255, 511, 1023, 2047, 4095, ... 5, 12, 27, 58, 121, 248, 503, 1014, 2037, 4084, 8179, ... 6, 14, 30, 62, 126, 254, 510, 1022, 2046, 4094, 8190, ... 9, 21, 48, 106, 227, 475, 978, 1992, 4029, 8113, 16292, ... 10, 24, 54, 116, 242, 496, 1006, 2028, 4074, 8168, 16358, ... 11, 26, 57, 120, 247, 502, 1013, 2036, 4083, 8178, 16369, ... 13, 29, 61, 125, 253, 509, 1021, 2045, 4093, 8189, 16381, ... 17, 38, 86, 192, 419, 894, 1872, 3864, 7893, 16006, 32298, ... 18, 42, 96, 212, 454, 950, 1956, 3984, 8058, 16226, 32584, ... 19, 45, 102, 222, 469, 971, 1984, 4020, 8103, 16281, 32650, ... 20, 47, 105, 226, 474, 977, 1991, 4028, 8112, 16291, 32661, ... 22, 51, 112, 237, 490, 999, 2020, 4065, 8158, 16347, 32728, ... 23, 53, 115, 241, 495, 1005, 2027, 4073, 8167, 16357, 32739, ... 25, 56, 119, 246, 501, 1012, 2035, 4082, 8177, 16368, 32751, ... 28, 60, 124, 252, 508, 1020, 2044, 4092, 8188, 16380, 32764, ... ...
Links
- Antti Karttunen, Table of n, a(n) for n = 1..210; the first 20 antidiagonals of array
- T. Kubo and R. Vakil, On Conway's recursive sequence, Discr. Math. 152 (1996), 225-252.
- Index entries for Hofstadter-type sequences
- Index entries for sequences that are permutations of the natural numbers
Crossrefs
Inverse permutation: A267102.
Transpose: A265903.
Cf. A265900 (main diagonal).
Column 1: A188163.
Column 2: A266109.
Row 1: A000079 (2^n).
Row 2: A000225 (2^n - 1, from 3 onward).
Row 3: A000325 (2^n - n, from 5 onward).
Row 4: A000918 (2^n - 2, from 6 onward).
Row 5: A084634 (?, from 9 onward).
Row 6: A132732 (2^n - 2n + 2, from 10 onward).
Row 7: A000295 (2^n - n - 1, from 11 onward).
Row 8: A036563 (2^n - 3).
Row 9: A084635 (?, from 17 onward).
Row 12: A048492 (?, from 20 onward).
Row 13: A249453 (?, from 22 onward).
Row 15: A000247 (2^n - n - 2, from 25 onward).
Row 16: A028399 (2^n - 4).
Comments