cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A244342 a(n) = phi(n)*h(n) where phi() is the Euler totient function, A000010, and h() is A092089.

Original entry on oeis.org

1, 2, 6, 8, 12, 12, 18, 32, 30, 24, 30, 48, 36, 36, 72, 96, 48, 60, 54, 96, 108, 60, 66, 192, 100, 72, 126, 144, 84, 144, 90, 256, 180, 96, 216, 240, 108, 108, 216, 384, 120, 216, 126, 240, 360, 132, 138, 576, 210, 200, 288, 288, 156, 252, 360, 576, 324, 168
Offset: 1

Views

Author

Michel Marcus, Jun 26 2014

Keywords

Comments

a(n) = Sum_{k=1..n} gcd(k^2-1, n) for those k that are coprime to n (see proof in link).
Multiplicative because both A000010 and A092089 are. - Andrew Howroyd, Jul 26 2018

Crossrefs

Programs

  • Maple
    A244342:= proc(n) add(`if`(igcd(k,n)=1,igcd(k^2-1,n),0),k=1..n) end proc;
    seq(A244342(i),i=1..1000); # Robert Israel, Jul 06 2014
  • Mathematica
    h[n_] := Product[{p, e} = pe; Which[OddQ[p], 2 e + 1, p == 2 && e == 1, 2, True, 4 (e - 1)], {pe, FactorInteger[n]}]; h[1] = 1;
    a[n_] := EulerPhi[n] h[n];
    Array[a, 100] (* Jean-François Alcover, Apr 08 2020 *)
  • PARI
    a(n) = sum(j=1, n, gcd(j^2-1,n)*(gcd(j,n)==1));