A244342 a(n) = phi(n)*h(n) where phi() is the Euler totient function, A000010, and h() is A092089.
1, 2, 6, 8, 12, 12, 18, 32, 30, 24, 30, 48, 36, 36, 72, 96, 48, 60, 54, 96, 108, 60, 66, 192, 100, 72, 126, 144, 84, 144, 90, 256, 180, 96, 216, 240, 108, 108, 216, 384, 120, 216, 126, 240, 360, 132, 138, 576, 210, 200, 288, 288, 156, 252, 360, 576, 324, 168
Offset: 1
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- László Tóth, Menon's identity and arithmetical sums representing functions of several variables, Rend. Sem. Mat. Univ. Politec. Torino, 69 (2011), 97-110 (see (36) in Corollary 15, p. 108); also on arXiv, arXiv:1103.5861 [math.NT], 2011.
Programs
-
Maple
A244342:= proc(n) add(`if`(igcd(k,n)=1,igcd(k^2-1,n),0),k=1..n) end proc; seq(A244342(i),i=1..1000); # Robert Israel, Jul 06 2014
-
Mathematica
h[n_] := Product[{p, e} = pe; Which[OddQ[p], 2 e + 1, p == 2 && e == 1, 2, True, 4 (e - 1)], {pe, FactorInteger[n]}]; h[1] = 1; a[n_] := EulerPhi[n] h[n]; Array[a, 100] (* Jean-François Alcover, Apr 08 2020 *)
-
PARI
a(n) = sum(j=1, n, gcd(j^2-1,n)*(gcd(j,n)==1));
Comments