A244359 Numbers n such that n, n+1, n+2, n+3, and n+4 are not divisible by any of their nonzero digits.
866, 976, 7786, 8066, 8786, 8986, 9976, 70786, 77786, 79976, 80066, 80986, 87866, 89066, 89986, 98786, 99866, 99976, 700786, 707786, 709976, 770786, 778786, 778996, 780866, 788986, 789986, 799786, 799976, 800066, 800986, 809986, 879986, 887986, 888986, 889786, 890066, 890786, 890986
Offset: 1
Examples
866, 867, 868, 869 and 870 are not divisible by any of their nonzero digits. Thus 866 is a member of this sequence.
Programs
-
Mathematica
div[n_]:=Module[{nzd=Select[IntegerDigits[n],#!=0&]},NoneTrue[n/nzd, IntegerQ]]; SequencePosition[Table[If[div[n],1,0],{n,900000}],{1,1,1,1,1}][[All,1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Dec 11 2018 *)
-
Python
def a(n): for i in range(10**4): tot = 0 for k in range(i,i+n): c = 0 for b in str(k): if b != '0': if k%int(b)!=0: c += 1 if c == len(str(k))-str(k).count('0'): tot += 1 if tot == n: print(i,end=', ') a(5)
Comments