A244372 Number T(n,k) of unlabeled rooted trees with n nodes and maximal outdegree (branching factor) k; triangle T(n,k), n>=1, 0<=k<=n-1, read by rows.
1, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 5, 2, 1, 0, 1, 10, 6, 2, 1, 0, 1, 22, 16, 6, 2, 1, 0, 1, 45, 43, 17, 6, 2, 1, 0, 1, 97, 113, 49, 17, 6, 2, 1, 0, 1, 206, 300, 136, 50, 17, 6, 2, 1, 0, 1, 450, 787, 386, 142, 50, 17, 6, 2, 1, 0, 1, 982, 2074, 1081, 409, 143, 50, 17, 6, 2, 1
Offset: 1
Examples
The A000081(5) = 9 rooted trees with 5 nodes sorted by maximal outdegree are: : o : o o o o o : o o : o : : | : | | / \ / \ / \ : | /|\ : /( )\ : : o : o o o o o o o o : o o o o : o o o o : : | : | / \ | / \ | | : /|\ | : : : o : o o o o o o o o : o o o o : : : | : / \ | | : : : : o : o o o o : : : : | : : : : : o : : : : : : : : : : -1- : ---------------2--------------- : -----3----- : ---4--- : Thus row 5 = [0, 1, 5, 2, 1]. Triangle T(n,k) begins: 1; 0, 1; 0, 1, 1; 0, 1, 2, 1; 0, 1, 5, 2, 1; 0, 1, 10, 6, 2, 1; 0, 1, 22, 16, 6, 2, 1; 0, 1, 45, 43, 17, 6, 2, 1; 0, 1, 97, 113, 49, 17, 6, 2, 1; 0, 1, 206, 300, 136, 50, 17, 6, 2, 1; 0, 1, 450, 787, 386, 142, 50, 17, 6, 2, 1; 0, 1, 982, 2074, 1081, 409, 143, 50, 17, 6, 2, 1;
Links
- Alois P. Heinz, Rows n = 1..141, flattened
Crossrefs
Programs
-
Maple
b:= proc(n, i, t, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add(binomial(b((i-1)$2, k$2)+j-1, j)* b(n-i*j, i-1, t-j, k), j=0..min(t, n/i)))) end: T:= (n, k)-> b(n-1$2, k$2) -`if`(k=0, 0, b(n-1$2, k-1$2)): seq(seq(T(n, k), k=0..n-1), n=1..14);
-
Mathematica
b[n_, i_, t_, k_] := b[n, i, t, k] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[b[i-1, i-1, k, k]+j-1, j]*b[n-i*j, i-1, t-j, k], {j, 0, Min[t, n/i]}]]]; T[n_, k_] := b[n-1, n-1, k, k] - If[k == 0, 0, b[n-1, n-1, k-1, k-1]]; Table[Table[T[n, k], {k, 0, n-1}], {n, 1, 14}] // Flatten (* Jean-François Alcover, Jul 01 2014, translated from Maple *)