cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A244372 Number T(n,k) of unlabeled rooted trees with n nodes and maximal outdegree (branching factor) k; triangle T(n,k), n>=1, 0<=k<=n-1, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 5, 2, 1, 0, 1, 10, 6, 2, 1, 0, 1, 22, 16, 6, 2, 1, 0, 1, 45, 43, 17, 6, 2, 1, 0, 1, 97, 113, 49, 17, 6, 2, 1, 0, 1, 206, 300, 136, 50, 17, 6, 2, 1, 0, 1, 450, 787, 386, 142, 50, 17, 6, 2, 1, 0, 1, 982, 2074, 1081, 409, 143, 50, 17, 6, 2, 1
Offset: 1

Views

Author

Joerg Arndt and Alois P. Heinz, Jun 26 2014

Keywords

Examples

			The A000081(5) = 9 rooted trees with 5 nodes sorted by maximal outdegree are:
:  o  :   o     o     o       o     o   :   o     o   :    o    :
:  |  :   |     |    / \     / \   / \  :   |    /|\  :  /( )\  :
:  o  :   o     o   o   o   o   o o   o :   o   o o o : o o o o :
:  |  :   |    / \  |      / \    |   | :  /|\  |     :         :
:  o  :   o   o   o o     o   o   o   o : o o o o     :         :
:  |  :  / \  |     |                   :             :         :
:  o  : o   o o     o                   :             :         :
:  |  :                                 :             :         :
:  o  :                                 :             :         :
:     :                                 :             :         :
: -1- : ---------------2--------------- : -----3----- : ---4--- :
Thus row 5 = [0, 1, 5, 2, 1].
Triangle T(n,k) begins:
  1;
  0,  1;
  0,  1,   1;
  0,  1,   2,    1;
  0,  1,   5,    2,    1;
  0,  1,  10,    6,    2,   1;
  0,  1,  22,   16,    6,   2,   1;
  0,  1,  45,   43,   17,   6,   2,  1;
  0,  1,  97,  113,   49,  17,   6,  2,  1;
  0,  1, 206,  300,  136,  50,  17,  6,  2,  1;
  0,  1, 450,  787,  386, 142,  50, 17,  6,  2,  1;
  0,  1, 982, 2074, 1081, 409, 143, 50, 17,  6,  2,  1;
		

Crossrefs

T(2n,n) gives A244407(n).
T(2n+1,n) gives A244410(n).
Row sum give A000081.
Cf. A244454.

Programs

  • Maple
    b:= proc(n, i, t, k) option remember; `if`(n=0, 1,
          `if`(i<1, 0, add(binomial(b((i-1)$2, k$2)+j-1, j)*
           b(n-i*j, i-1, t-j, k), j=0..min(t, n/i))))
        end:
    T:= (n, k)-> b(n-1$2, k$2) -`if`(k=0, 0, b(n-1$2, k-1$2)):
    seq(seq(T(n, k), k=0..n-1), n=1..14);
  • Mathematica
    b[n_, i_, t_, k_] := b[n, i, t, k] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[b[i-1, i-1, k, k]+j-1, j]*b[n-i*j, i-1, t-j, k], {j, 0, Min[t, n/i]}]]]; T[n_, k_] := b[n-1, n-1, k, k] - If[k == 0, 0, b[n-1, n-1, k-1, k-1]]; Table[Table[T[n, k], {k, 0, n-1}], {n, 1, 14}] // Flatten (* Jean-François Alcover, Jul 01 2014, translated from Maple *)